192 числа.
Решение:Первая цифра нашего пятизначного числа может быть любой из 2, 4, 6, 8 - всего 4 варианта (она должна быть четной, но и одновременно не равняться нулю).
Вторая цифра - любая четная, не использованная раннее. Таких должно быть тоже 4. Четвертая цифра - любая из 3 оставшихся четных.
А вот для третьей цифры нашего числа есть 2 варианта: она либо 3, либо 5 (по условию). Для пятой цифры выбор не больше: тоже 2 значения.
Итого (перемножаем все полученные значения):
4 · 4 · 3 · 2 · 2 = 192
Задача решена!
192 числа.
Решение:Первая цифра нашего пятизначного числа может быть любой из 2, 4, 6, 8 - всего 4 варианта (она должна быть четной, но и одновременно не равняться нулю).
Вторая цифра - любая четная, не использованная раннее. Таких должно быть тоже 4. Четвертая цифра - любая из 3 оставшихся четных.
А вот для третьей цифры нашего числа есть 2 варианта: она либо 3, либо 5 (по условию). Для пятой цифры выбор не больше: тоже 2 значения.
Итого (перемножаем все полученные значения):
4 · 4 · 3 · 2 · 2 = 192
Задача решена!
Задание № 3:
Сколько целых неотрицательных решений имеет уравнение: 3x+4y=30?
чтобы было побыстрее заметим, что 4у должно делиться на 3
у=0: 3х=30; х=10 - ПОДХОДИТ
у=3: 3х+12=30; 3х=18; х=6 - ПОДХОДИТ
у=6: 3х+24=30; 3х=6; х=2 - ПОДХОДИТ
у=9: 3х+36=30; 3х=-6; х=-2 - НЕ ПОДХОДИТ (-2 не целое неотрицательное)
дальнейшие решения для х будет еще меньше
всего три решения
ответ: 3