М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Homoeopath
Homoeopath
25.07.2022 19:45 •  Математика

Длина одной стороны прямоугольника равна 2 см что составляет одну третью часть длины другой стороны вычисли периметр и площадь этого прямоугольника начерти этот прямоугольник

👇
Ответ:
alenakostenkova
alenakostenkova
25.07.2022
2: 1/3=2*3:1=6 (см) длина
Р= (а+б)*2
(2+6)*2=8*2=16 (см) периметр прямоугольника
S=а*б
2*6=12 (см2) площадь прямоугольника
Начертите сами:
ширина 2 см
Длина 6 см
4,7(8 оценок)
Ответ:
BuffyGamesLol
BuffyGamesLol
25.07.2022
2 см ширина 6 длина. 1) 2 умножить на 3= 6 2) (6+2) умножить на 2= 16
3) 6 умножить на 2 = 12
4,6(57 оценок)
Открыть все ответы
Ответ:
parol123456
parol123456
25.07.2022
Решить уравнение с раскрытием скобок:
а) 10-2*(3х+5)=4*(х-2)
10-6х-10=4х-8
-6х-4х=-8
-10х=-8
10х=8
х=8:10
х=0,8

Проверка:
10-2*(3*0,8+5)=4*(0,8-2)
10-2*7,4=4*(-1,2)
-4,8=-4,8

б) 4*(0,7х-4)=3*(-0,2х+6)
2,8х-16=-0,6х+18
2,8х+0,6х=18+16
3,4х=34
х=34:3,4
х=10

Проверка:
4*(0,7*10-4)=3*(-0,2*10+6)
4*3=3*4
12=12

в) 7,2-(6,2-х)=2,2
7,2-6,2+х=2,2
1+х=2,2
х=2,2-1
х=1,2

Проверка:
7,2-(6,2-х)=2,2
7,2-(6,2-1,2)=7,2-5=2,2

г) -(16-х)+23,5=-40,4
-16+х+23,5=-40,4
7,5+х=-40,4
х=-40,4-7,5
х=-47,9

Проверка:
-(16-(-47,9))+23,5=-(16+47,9)+23,5=-63,9+23,5=-40,4
4,8(81 оценок)
Ответ:
playertony200
playertony200
25.07.2022

Рівняння вигляду y'' + p_{1}y' + p_{2}y = 0, де p_{1}, \ p_{2} — задані числа, є лінійним однорідним диференціальним рівнянням (ЛОДР) другого порядку зі сталими коефіцієнтами.

Метод Ейлера (метод характеристичних рівнянь) дозволяє знаходити загальний розв'язок для вказаного рівняння.

Розв'язок цього рівняння шукаємо у вигляді y = e^{kx}, де k — деяка стала (дійсна чи комплексна). Тоді, якщо y = e^{kx}, то y' = ke^{kx}, \ y'' = k^{2}e^{kx}

k^{2}e^{kx} + p_{1}ke^{kx} + p_{2}e^{kx} = 0 \ \ \ | : e^{kx}

k^{2} + p_{1}k + p_{2} = 0 — характеристичне рівняння

Можливі три випадки:

k_{1} і k_{2} — дійсні, k_{1}\neq k_{2}

Фундаментальна система розв'язків: y_{1} = e^{k_{1}x}, \ y_{2} = e^{k_{2}x} — функції лінійно незалежні, бо \dfrac{y_{1}}{y_{2}} = \dfrac{e^{k_{1}x}}{e^{k_{2}x}} = e^{(k_{1} - k_{2})x} \neq \text{const}

Загальний розв'язок: y = C_{1}y_{1} + C_{2}y_{2} = C_{1}e^{k_{1}x} + C_{2}e^{k_{2}x}

Приклад: а) y'' - 49y = 0

Метод Ейлера: y = e^{kx}, \ y' = ke^{kx}, \ y'' = k^{2}e^{kx}

Характеристичне рівняння: k^{2} - 49 = 0; \ k^{2} = 49; \ k_{1} = -7, \ k_{2} = 7

Загальний розв'язок: y = C_{1}e^{-7x} + C_{2}e^{7x}

Відповідь: y = C_{1}e^{-7x} + C_{2}e^{7x}

Приклад: в) y'' + 2y' - 3y = 0

Метод Ейлера: y = e^{kx}, \ y' = ke^{kx}, \ y'' = k^{2}e^{kx}

Характеристичне рівняння: k^{2} + 2k - 3 = 0; \ k_{1,2} = \dfrac{-2 \pm \sqrt{2^{2} - 4 \cdot 1 \cdot (-3)}}{2 \cdot 1} =

= \dfrac{-2 \pm 4}{2} = \left[\begin{array}{ccc}k_{1} = -3\\k_{2} = 1 \ \ \\\end{array}\right

Загальний розв'язок: y = C_{1}e^{-3x} + C_{2}e^{x}

Відповідь: y = C_{1}e^{-3x} + C_{2}e^{x}

k_{1} і k_{2} — дійсні, k_{1} = k_{2}

Якщо покласти y_{1} = e^{k_{1}x}, \ y_{2} = e^{k_{2}x}, то ці функції лінійно залежні, бо \dfrac{y_{1}}{y_{2}} = \dfrac{e^{k_{1}x}}{e^{k_{2}x}} = \dfrac{e^{k_{1}x}}{e^{k_{1}x}} = 1 = \text{const}

Фундаментальна система розв'язків: y_{1} = e^{k_{1}x}, \ y_{2} = xe^{k_{1}x} — функції лінійно незалежні, бо \dfrac{y_{1}}{y_{2}} = \dfrac{e^{k_{1}x}}{xe^{k_{1}x}} = \dfrac{1}{x} \neq \text{const}

Загальний розв'язок: y = C_{1}y_{1} + C_{2}y_{2} = C_{1}e^{k_{1}x} + C_{2}xe^{k_{1}x}

k_{1} і k_{2} — комплексно спряжені, k_{1,2} = \alpha \pm \beta i, \ \alpha \in \mathbb{R}, \ \beta \in \mathbb{R}, \ i = \sqrt{-1}

Фундаментальна система розв'язків: y_{1} = e^{\alpha x}\cos \beta x, \ y_{2} = e^{\alpha x}\sin \beta x — функції лінійно незалежні, бо \dfrac{y_{1}}{y_{2}} = \dfrac{e^{\alpha x}\cos \beta x}{e^{\alpha x}\sin \beta x}} = \text{ctg} \ \beta x \neq \text{const}

Загальний розв'язок: y = C_{1}y_{1} + C_{2}y_{2} = C_{1}e^{\alpha x}\cos \beta x + C_{2}e^{\alpha x}\sin \beta x

Приклад: б) y'' - 4y' + 5y = 0

Метод Ейлера: y = e^{kx}, \ y' = ke^{kx}, \ y'' = k^{2}e^{kx}

Характеристичне рівняння: k^{2} - 4k + 5 = 0; \ k_{1,2} = \dfrac{4 \pm \sqrt{4^{2} - 4 \cdot 1 \cdot 5}}{2 \cdot 1} =

= \dfrac{4 \pm \sqrt{-4}}{2} = \dfrac{4 \pm \sqrt{4} \cdot \sqrt{-1}}{2} = \dfrac{4 \pm 2i}{2} = 2 \pm i

Отже, \alpha = 2, \ \beta = 1

Загальний розв'язок: y = C_{1}e^{2 x}\cos x + C_{2}e^{2 x}\sin x

Відповідь: y = C_{1}e^{2 x}\cos x + C_{2}e^{2 x}\sin x

4,6(9 оценок)
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ