Бесконечной периодической десятичной дробью называют такую дробь, десятичные знаки которой, начиная с некоторого, представляют собой повторение одной и той же группы цифр, состоящей или из одной цифры, отличной от 0 и 9, или из нескольких цифр, причем последовательность цифр при повторении в этой группе не изменяется.
Повторяющаяся группа цифр называется периодом бесконечной периодической десятичной дроби.
Для обозначения периода десятичной дроби используют круглые скобки.
Например,
2,616161… = 2,(61) ; 53222222… = 5,3(2) .
Замечание. Еще раз подчеркнем, что период бесконечной десятичной дроби не может состоять из одной или нескольких цифр 0 и не может состоять из одной или нескольких цифр 9.
Бесконечная десятичная дробь, не являющаяся периодической, называется непериодической.
Рассмотрим треугольник одна вершина которого совпадает с вершиной пирамиды, а две другие - середины противолежащих сторон основания
SA = SB * sin ABS
SB = AB / cos ABS
AB = OB * cos ABO
OB = AO / sin ABO
учитывая, что AO = 1 по условию
AB = 2 (половина стороны основания)
2 = AB = OB * cos ABO = (AO / sin ABO) * cos ABO = cos ABO / sin ABO
или cos ABO = 2 sin ABO
угол ABS в два раза больше ABO. Поэтому по формулам преобразования двойных углов получим
SA = SB * sin ABS = (AB / cos ABS) * sin ABS =
= (2 / (cos^2 ABO - sin^2 ABO)) * 2 sin ABO cos ABO =
(подставим здесь формулу cos ABO = 2 sin ABO)
= 4 sin ABO (2 sin ABO) / (4 sin^2 ABO - sin^2 ABO) =
=8 sin^2 ABO / (3 sin^2 ABO) = 8/3
Объем пирамиды равен 1/3 hS = 1/3 * 8/3 * 4*4 = 128/9 =
9*9=81
81+9=90
90:9=10