Вкоробке 6 красных, 7 зелёных, 8 синих и 9 жёлтых карандашей. в темноте из коробки берут карандаши. какое наименьшее число карандашей надо взять, чтобы среди них обязательно было 3 красных и 2 зелёных карандаша?
В коробке 6 красных, 7 зелёных, 8 синих и 9 жёлтых карандашей. В темноте из коробки берут карандаши. Какое наименьшее число карандашей надо взять, чтобы среди них обязательно было 3 красных и 2 зелёных карандаша?
худший случай: сначала взяли все карандаши других цветов (8 синих + 9 желтых = 17), потом все зеленые (их общее число больше, но требуемое число меньше = 7) и наконец 3 красных
Обозначим долю сливок в масле как а долю масла в сливках, как
Нам дано кг молока. Посчитаем, какую массу масла можно из него получить.
Для начала, чтобы получить массу сливок , которую можно собрать с молока, воспользуемся простым правилом: умножаем на число процентов в доле и делим на сто процентов:
кг.
**(A)** Заметим при этом, что при нахождении мы просто умножили на
Теперь, чтобы получить массу масла , которую можно выделить из собранных сливок, воспользуемся теми же правилами:
кг масла
**(B)** Заметим при этом, что при нахождении мы просто умножили на т.е., учитывая расчёт **(A)** мы умножили на а затем на и в самом деле:
кг масла
Значит масса конечного масла и исходного молока всегда связаны одним и тем же соотношением:
;
**(С)** ;
Теперь ответим на последний вопрос, в котором предлагаются другие обстоятельства, в которых нам дана масса конечного масла, а найти нужно массу исходного молока:
кг ;
отсюда: кг кг кг ;
кг кг ;
Или можно сразу же выразить массу молока из уравнения **(С)** :
Нужно найти отношение (то есть поделить) общего числа бросков к числу попаданий для каждого баскетболиста и сравнить их. Проделаем это: I баскетболист Сделал 8 бросков, попал 3 раза, отсюда отношение общего числа бросков к числу попаданий имеет вид: . II баскетболист Сделал 15 бросков, 6 из которых были удачными, найдем отсюда долю попаданий от общего числа бросков: . Готово. Определим теперь, результат какого баскетболиста лучше. Для этого необходимо сравнить дроби. Чтобы сравнить дроби, приведем их к общему знаменателю, получается: и , где числитель дроби — общее число бросков, а ее знаменатель — число попаданий. Видно, что при одинаковом числе попаданий, второй баскетболист совершил меньше бросков, а значит и его результат лучше.
Задание № 6:
В коробке 6 красных, 7 зелёных, 8 синих и 9 жёлтых карандашей. В темноте из коробки берут карандаши. Какое наименьшее число карандашей надо взять, чтобы среди них обязательно было 3 красных и 2 зелёных карандаша?
худший случай: сначала взяли все карандаши других цветов (8 синих + 9 желтых = 17), потом все зеленые (их общее число больше, но требуемое число меньше = 7) и наконец 3 красных
17+7+3=27
ответ: 27