1) 1*11=11 (ног) -если бы каждый стол на одной ноге 2) 18-11=7 (журавлей) - было 3) 7*2=14 (ног) - у журавлей 4) 18-14=4 (цап.) -было ответ: 4 цапли было
Попробуем доказать по индукции. 5^(5x+1) + 4^(5x+2) + 3^(5x) = 5*5^(5x) + 16*4^(5x) + 3^(5x) При x = 0 будет 5*5^0 + 16*5^0 + 3^0 = 5 + 16 + 1 = 22 = 2*11 - делится на 11. Пусть при каком-то x это верно, докажем, что это верно и при x+1 5^(5x+5+1) + 4^(5x+5+2) + 3^(5x+5) = 5^(5x+6) + 4^(5x+7) + 3^(5x+5) = = 5^6*5^(5x) + 4^7*4^(5x) + 3^5*3^(5x) = 15625*5^(5x) + 16384*4^(5x) + 243*3^(5x) Вычтем из него нашу сумму 5*5^(5x) + 16*4^(5x) + 3^(5x), которая делится на 11, и проверим, делится ли на 11 разность. 15625*5^(5x) + 16384*4^(5x) + 243*3^(5x) - 5*5^(5x) - 16*4^(5x) - 3^(5x) = = 15620*5^(5x) + 16368*4^(5x) + 242*3^(5x) = = 11*1420*5^(5x) + 11*1488*4^(5x) + 11*22*3^(5x) Все три коэффициента делятся на 11, значит, и разность делится на 11, и следующий член последовательности 5^(5x+6) + 4^(5x+7) + 3^(5x+5) делится на 11.
2) 18-11=7 (журавлей) - было
3) 7*2=14 (ног) - у журавлей
4) 18-14=4 (цап.) -было
ответ: 4 цапли было