ОДЗ на рисунке (решения долны входить в синие секторы)
решение на фото.
ответ:
симметрия в природе
целью данной работы является определение роли симметрии в живой и неживой природе.
симметрия является одной из наиболее и одной из наиболее общих закономерностей мироздания: живой, неживой природы и общества. принципы симметрии играют важную роль в и , и биологии, технике и архитектуре, живописи и скульптуре, поэзии и музыке.
законы природы, неисчерпаемой в своем многообразии картиной явлений, в свою очередь, подчиняются принципам симметрии.
существует две группы симметрии. к первой группе относится симметрия положений, форм, структур. это та симметрия, которую можно непосредственно видеть. она может быть названа симметрией. вторая группа характеризует симметрию явлений и законов природы. эта симметрия лежит в самой основе естественнонаучной картины мира: ее можно назвать симметрией.
исследование симметрии земли как планеты в целом позволяет систематически и с соответствующей детальностью проанализировать динамику формирования фигуры земли, т. е. рассмотреть качественную и количественную роль различных силовых полей, воздействие которых определяет эту фигуру.
суммарное воздействие силы земного тяготения можно изобразить в виде пучка бесчисленного множества одинаковых векторов, направленных к одной общей точке – центру земли. симметрия такого пучка, так же как и симметрия идеального и неподвижного шара отвечает бесчисленному множеству осей симметрии бесконечного порядка (осей вращения) и бесчисленному множеству плоскостей симметрии, пересекающихся в одной точке – центре шара. симметрия воздействующего на землю поля солнечной радиации соответствует, очевидно, симметрии конуса, ось которого совпадает с осью солнце – земля. поле солнечной радиации в окрестностях земли – симметрия цилиндра.
круговая симметрия обладает большой общностью. главная особенность кругового преобразования состоит в том, что оно всегда сохраняет углы фигуры и сферу, и всегда переходит в сферу другого радиуса. вот почему кристаллы любого вещества могут иметь самый разный вид, но углы между гранями всегда постоянны. каждая снежинка – это маленький кристалл замерзшей воды. форма снежинок может быть разнообразной, но все они симметрией – поворотной симметрией 6-го порядка и, кроме того, зеркальной симметрией.
на явление симметрии в живой природе обратили внимание еще пифагорейцы в связи с развитием ими учения о гармонии. установлено, что в природе наиболее распространены два вида симметрии - «зеркальная» и «лучевая» (или «радиальная») симметрии.
у цветковых растений в большинстве проявляется радиальная и зеркальная симметрия. цветок считается симметричным, когда каждый околоцветник состоит из равного числа частей. к формам с лучевой симметрией относятся гриб, ромашка, сосновое дерево и часто такой вид симметрии называется «ромашко-грибной» симметрией. для листьев характерна зеркальная симметрия.
типы симметрии у животных: центральная; осевая; радиальная; билатеральная (зеркальная); поступательная и поступательно-вращательная; винтовая, а также спиральная симметрия. примером винтовой симметрии может служить раковина улитки (правый винт). зеркальная симметрия хорошо видна у бабочки; симметрия левого и правого проявляется здесь с почти строгостью.
также отметим зеркальную симметрию человеческого тела: правое и левое полушария головного мозга, правые и левые кисти рук, ступни ног и т.д. она же проявляется в гармонии человеческих движений, как в танцах, так и в технической работе, где проявляется закономерность.
принципы симметрии лежат в основе теории относительности, квантовой механики, твердого тела, атомной и ядерной , элементарных частиц. эти принципы наиболее ярко выражаются в свойствах инвариантности законов природы. речь при этом идет не только о законах, но и других, например, биологических. примером биологического закона сохранения может служить закон наследования. молекула днк, являющаяся носителем наследственной информации в живом организме, имеет структуру двойной правой спирали.
принцип «симметрии» широко используется в искусстве. бордюры, используемые в архитектурных и скульптурных произведениях, орнаменты, используемые в прикладном искусстве, - все это примеры использования симметрии.
на основании вышесказанного можно утверждать, симметрия в природе проявляется в самых различных объектах материального мира и отражает наиболее общие, наиболее его свойства. поэтому исследование симметрии разнообразных природных объектов и сопоставление результатов является удобным и надежным инструментом познания основных закономерностей существования материи. без принципа симметрии нельзя рассмотреть ни одной проблемы, будь то проблема жизни или проблема контактов с внеземными цивилизациями.
Объяснения:В жизни у всех нас и в нашем мире много чего интересного и прекрасного. И так одно из чего-то прекрасного - это чудо.Людям сложно объяснить это понятие. Чудом может быть как и друзей так и что-то невероятное. Но чудо это хорошие слово чудо..Разные ситуации могут даже быть опасными или же наоборот. У меня случилось один раз чудо: когда я хотела выйти на улицу сразу же пошёл дождьЯ не знала что делать ,и потом самой себе сказала дождь прикратись ,а он сразу же Или же когда машина с невероятной скоростью ехала прямо на меня ,но тут вдруг ко мне человек подбижал схватил меня за руку и прижал к себе говоря больше так не делай разве это не чудо. Неоткуда взялся человек и мне жизнь?Чудеса всегда есть но в них нужно верить и тогда чудо обязательно сбудется!
Область определения запишем
Систематизируем немного
Из последнего видим, что , а это уже есть. Остается тогда
Правда, решая неравенство
методом интервалов, получаем
Но тангенс из другого неравенства больше нуля, поэтому
и не забываем , вот все ограничения.
Теперь решаем неравенство:
Тут t явно не равно нулю в числителе, поэтому это ограничение нам особо не нужно.
Решаем 1-ое уравнение (t=1/2):
Видно по сумме коэффициентов, равно 0, что p=1 - корень уравнения. Однако, , но по ограничениям не подходит. Теперь делим уголком или по схеме Горнера на p-1 и получаем
Видно, что оба значения положительны, но второе и больше 1/2, так как в числителе число, куда больше, чем 1.
А вот другой корень проверим:
, а значит, tgx <1/2 в этом случае и это нам не подходит, отсюда берем лишь
Решаем второе уравнение:
(то, что здесь понятно, поэтому смело на него умножаем все уравнение без потери корней)
Тут сумма коэффициентов равна 0, k=1 - корень. Поделим на k-1 уголком или по схеме Горнера и получим
Корень k=1=tgx нам не подходит, так как по ограничениям
Решаем квадратное уравнение, которое дает нам вторая скобка.
Отрицательный корень не берем, так как
Проверим положительный корень на выполнение ограничений (сравня с 1/2)
Левое выражение больше правого, значит, этот корень удовлетворяет (так как это не целое число, то оно не равно 1, то есть , поэтому корень подходит)
ответ: