М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Элизаббета
Элизаббета
17.06.2020 16:59 •  Математика

Вплену у турок барона мюнхгаузена назначили пчелиным пастухом. он пас 1 596, которые жили на лужайке в 6 ульях, поровну в каждом.однажды дикие медведи сломали 2 улья,и барону мюнхгаузену пришлось по-новому расселить пчел в оставшиеся ульи, поровну в каждый .сколько пчел будет теперь жить в каждом улье? на сколько больше пчел в каждом улье теперь,чем раньше! ? решите !

👇
Ответ:
trixi1989vv
trixi1989vv
17.06.2020

1596/6=266пчел- жило пчел первоначально в улее

6-2=4улья- во столько улей переселили пчел

1596/4=399пчел- стало жить в одном улее

399-266=133пчел- на столько больше теперь чем раньше

4,8(31 оценок)
Ответ:
Siyadat2005
Siyadat2005
17.06.2020
1)1596:6=266 пчёл-жили в одном улье сначало. 2)6-2=4 улья -осталось. 3)2*266=532 пчелы-нужно расселить. 4)1596:4=399 пчёл-стали жить в одном улье. 5)399-266=на 133 пчелы больше- живут в одном улье
4,4(54 оценок)
Открыть все ответы
Ответ:
alex270502
alex270502
17.06.2020
Пусть диагонали параллелограмма -- это векторы c и d.
Пользуясь правилом треугольника, выразим диагонали через векторы a и b:
c = a + b = (4m + 2n) + (4m + n) = 8m + 3n
d = a - b = (4m + 2n) = (4m + n) = n

Скалярное произведение c*d = (8m + 3n)*n = 8mn + 3nn
nn = |n| * |n| * cos0° = 1 * 1 * 1 = 1
3nn = 3
mn = |m| * |n| * cos60° = 1 * 1 * 1/2 = 1/2
8mn = 4

c*d = 8mn + 3nn = 3 + 4 = 7
Таким образом |c| * |d| * cos(c^d) = 7

Чтобы найти косинус между c и d из формулы скалярного произведения нужно найти |c| и |d|:
|c| = \sqrt{c^2} = \sqrt{(8m + 3n)^2}= \sqrt{64mm+48mn+9nn}= \\ \\ \sqrt{64+24+9} = \sqrt{97} \\ \\ |d|= \sqrt{d^2}= \sqrt{n^2} = \sqrt{1} =1

То есть c*d = |c| * |d| * cos(c^d) = √97 * cos(c^d) = 7

cos(c^d) = \frac{7}{ \sqrt{97} }

(с^d) = arccos \frac{7}{ \sqrt{97} }
4,4(23 оценок)
Ответ:
bogdankavolev9
bogdankavolev9
17.06.2020

Булус предложил решение задачи в той же статье, где он и опубликовал саму задачу. Он заявил, что первым вопросом мы должны найти бога, который не является богом случая, то есть является либо богом правды, либо богом лжи. Есть множество вопросов, которые могут быть заданы для достижения этой цели. Одна из стратегий — использование сложных логических связей в самом вопросе.

Вопрос Булоса: "Означает ли «da» «да», только если ты бог правды, а бог B — бог случая?". Другой вариант вопроса: «Является ли нечётным числом количество правдивых утверждений в следующем списке: ты — бог лжи, „ja“ обозначает „да“, B — бог случая?»

Решение задачи может быть упрощено, если использовать условные высказывания, противоречащие фактам (counterfactuals)[4][5]. Идея этого решения состоит в том, что на любой вопрос Q, требующий ответа «да» либо «нет», заданный богу правды или богу лжи:

Если я с тебя Q, ты ответишь «ja»?

результат будет «ja», если верный ответ на вопрос Q это «да», и «da», если верный ответ «нет». Для доказательства этого можно рассмотреть восемь возможных вариантов, предложенных самим Булосом:

Предположим, что «ja» обозначает «да», а «da» обозначает «нет»:Мы спрашивали у бога правды, и он ответил «ja». Поскольку он говорит правду и верный ответ на вопрос Q — «ja», оно обозначает «да».Мы спрашивали у бога правды, и он ответил «da». Поскольку он говорит правду и верный ответ на вопрос Q — «da», оно обозначает «нет».Мы спрашивали у бога лжи, и он ответил «ja». Поскольку он всегда лжёт, поэтому на вопрос Q он ответит «da». То есть правильный ответ на вопрос «ja», который обозначает «да».Мы спрашивали у бога лжи, и он ответил «da». Поскольку он всегда лжёт, поэтому на вопрос Q он ответит «ja». То есть правильный ответ на вопрос «da», который обозначает «нет».Предположим, что «ja» обозначает «нет», а «da» обозначает «да»:Мы спрашивали у бога правды, и он ответил «ja». Поскольку он говорит правду и верный ответ на вопрос Q — «da», оно обозначает «да».Мы спрашивали у бога правды, и он ответил «da». Поскольку он говорит правду и верный ответ на вопрос Q — «ja», оно обозначает «нет».Мы спрашивали у бога лжи, и он ответил «ja». Поскольку он всегда лжёт, поэтому на вопрос Q он отвечает «ja». Но, так как он лжёт, верный ответ на вопрос Q — «da», что означает «да».Мы спрашивали у бога лжи, и он ответил «da». Поскольку он всегда лжёт, поэтому на вопрос Q он отвечает «da». Но, так как он лжёт, верный ответ на вопрос Q — «ja», что означает «нет».

Используя этот факт, можно задавать вопросы:[4]

Спросим бога B: «Если я с у тебя „Бог А — бог случая?“, ты ответишь „ja“?». Если бог B отвечает «ja», значит, либо он бог случая (и отвечает случайным образом), либо он не бог случая, а на самом деле бог A — бог случая. В любом варианте, бог C — это не бог случая. Если же B отвечает «da», то либо он бог случая (и отвечает случайным образом), либо B не бог случая, что означает, что бог А — тоже не бог случая. В любом варианте, бог A — это не бог случая.Спросим у бога, который не является богом случая (по результатам предыдущего вопроса, либо A, либо C): «Если я с у тебя: „ты бог правды?“, ты ответишь „ja“?». Поскольку он не бог случая, ответ  «ja» обозначает, что он бог правды, а ответ «da» обозначает, что он бог лжи.Спросим у этого же бога «Если я у тебя с Бог B — бог случая?“, ответишь ли ты „ja“?». Если ответ «ja» — бог B является богом случая, если ответ «da», то бог, с которым ещё не говорили, является богом случая.

Оставшийся бог определяется методом исключения


 
4,8(30 оценок)
Это интересно:
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ