, где
Пошаговое объяснение:
В числителе стоит квадратный трёхчлен, у него может быть не более 2 корней. Значит, чтобы у уравнения было ровно 2 различных корня, числитель должен иметь 2 корня, и ни один из корней числителя не должен быть корнем знаменателя.
У числителя два неравных корня, если дискриминант больше нуля:
Найдём, при каких a хотя бы какой-то корень числителя является корнем знаменателя:
Подставляем найденный x в уравнение:
Один корень (a = 0) находится легко, еще один корень можно выписать по формулам для кубических уравнений или найти графически. Можно показать, что что этот корень единственный и удовлетворяет неравенству 1 - 4a > 0: производная функции
равна
. При a < 1/4 производная положительна, кроме того,
,
, поэтому f(a) имеет корень на отрезке [-1, 0]. Выражение для
довольно-таки громоздкое, по графику
, где
Пошаговое объяснение:
В числителе стоит квадратный трёхчлен, у него может быть не более 2 корней. Значит, чтобы у уравнения было ровно 2 различных корня, числитель должен иметь 2 корня, и ни один из корней числителя не должен быть корнем знаменателя.
У числителя два неравных корня, если дискриминант больше нуля:
Найдём, при каких a хотя бы какой-то корень числителя является корнем знаменателя:
Подставляем найденный x в уравнение:
Один корень (a = 0) находится легко, еще один корень можно выписать по формулам для кубических уравнений или найти графически. Можно показать, что что этот корень единственный и удовлетворяет неравенству 1 - 4a > 0: производная функции
равна
. При a < 1/4 производная положительна, кроме того,
,
, поэтому f(a) имеет корень на отрезке [-1, 0]. Выражение для
довольно-таки громоздкое, по графику
44 :1 -21:(3*7)+169*(80-80)+(25-24)*5= 48
1) 3*7=21
2) 80-80=0
3) 25-24=1
4) 44:1=44
5) 21:(3*7)=1
6) 169*0=0
7) 1*5=5
8) 44-1=43
9) 43+0=43
10) 43+5=48
ответ: 48