Пошаговое объяснение:
ищем определитель через разложение по 1-му столбцу:
2 1 -1
Δ₁₁= 2 -1 3
0 1 2
определитель для этого минора.
∆₁₁ = 2*((-1)*2-1*3)-2*(1*2-1*(-1))+0*(1*3-(-1)*(-1)) = -16
минор для (2,1):
-1 0 3
Δ₂₁= 2 -1 3
0 1 2
определитель для этого минора.
∆₂₁ = (-1)*((-1)*2-1*3)-2*(0*2-1*3)+0*(0*3-(-1)*3) = 11
минор для (3,1):
-1 0 3
∆₃₁ = 2 1 -1
0 1 2
определитель для этого минора.
∆3,1 = (-1)*(1*2-1*(-1))-2*(0*2-1*3)+0*(0*(-1)-1*3) = 3
минор для (4,1):
-1 0 3
Δ₄₁ = 2 1 -1
2 -1 3
определитель для этого минора.
∆₄₁ = (-1)*(1*3-(-1)*(-1))-2*(0*3-(-1)*3)+2*(0*(-1)-1*3) = -14
определитель матрицы
∆ = (-1)⁽¹⁺¹⁾ *1*(-16) + (-1)⁽²⁺¹⁾ *3*11 + (-1)⁽³⁺¹⁾ *1*3 + (-1)⁽⁴⁺¹⁾ *4*(-14) = 10
2х=-3
х=-3:2
х=-1,5.
-5х+2х=9-6
-3х=3
х=3:(-3)
х=-1
2х+2=3
2х=3-2
2х=1
х=1:2
х=1,5
9-6+8х=-2х+1
8х+2х=1-9+6
10х=-2
х=-2:10
х=-0,2