В жизни часто приходится встречаться с различными совокупностями объектов, объединёнными в одно целое по некоторому признаку. Для обозначения этих совокупностей используются различные слова. Например, говорят: «стадо коров», «букет цветов», «команда футболистов» и т. д.
В математике в целях единообразия для обозначения совокупностей употребляется единый термин — множество. Например, говорят: множество чётных чисел, множество двузначных чисел, множество правильных дробей со знаменателем 5.
Термин «множество» употребляется и тогда, когда речь идёт о нечисловых множествах. Например, говорят о множестве диагоналей многоугольника, о множестве точек координатной плоскости, о множестве прямых, проходящих через данную точку.
Объекты или предметы, составляющие множество, называют элементами множества. Например, число 89 — элемент мнoжества двузначных чисел; точка В — элемент мнoжества вершин многоугольника ABCDE.
Множeства бывают конечные и бесконечные. Например, множество двузначных чисел — конечное множество (оно содержит 90 элементов), а множество чётных чисел — бесконечное множество.
Пошаговое объяснение:
Нам известно, что у квадрата 4 стороны, а что бы найти S, нужно длину умножить на ширину. Т.е. можно предположить, что:
16:4=4(см) - сторона квадрата.
P= 2*(4+4) = 16(см)
Задача 2:
Чтобы найти вторую сторону, нам нужно площадь разделить на другую сторону:
150:3=50(см)
Р= 2*(50+3)= 106(см)
Что бы найти 2 сторону, нам нужно:
1) 9*2=18(см) - двойная длина
2) 48-18= 30(см) - двойная ширина
3) 30:2-15(см) - ширина.
S= 9*15=135(см²) -