1.
средняя линия трапеции делится диагональю на отрезки:
х см и (х + 2) см - по условию,
2.
диагональ трапеции делит ее на два треугольника, в которых ее средняя линия является средней линией этих треугольников, а ср. линия тр-ка равна половине стороны, которой она параллельна, тоесть:
ср.линия получившегося треугольника с основанием 9 см равна (х + 2), значит:
х + 2 = 9 : 2,
х + 2 = 4,5,
х = 2,5 см, поэтому:
3.
средняя линия трапеции равна:
х + (х + 2) = 2,5 + 4,5 = 7 см,
4.
меньшее основание трапеции:
2 * 7 - 9 = 5 см
Пусть у нас число АБВГД. Признаком делимости числа на 9 является сумма входящих в него цифр, кратная 9, т.е.
А + Б + В + Г + Д = n*9, где n - число натурального ряда.
Сумма чисел, согласно переместительному закону сложения, не зависит от порядка расположения и перестановки слагаемых.
А + Б + В + Г + Д = А + В + Б + Г + Д = = Д + Г + В + Б + А = 9n
Т.е. все 120 чисел (5! = 120), полученных перестановкой входящих в него цифр, будут иметь одну и ту же сумму, делящуюся на 9.