Сравнение дробей с одинаковыми знаменателями по сути является сравнением количества одинаковых долей. К примеру, обыкновенная дробь 3/7 определяет 3доли 1/7, а дробь 8/7 соответствует 8 долям 1/7, поэтому сравнение дробей с одинаковыми знаменателями 3/7 и 8/7 сводится к сравнению чисел 3 и 8, то есть, к сравнению числителей.
Из этих соображений вытекает правило сравнения дробей с одинаковыми знаменателями: из двух дробей с одинаковыми знаменателями больше та дробь, числитель которой больше, и меньше та дробь, числитель которой меньше.
Озвученное правило объясняет, как сравнить дроби с одинаковыми знаменателями. Рассмотрим пример применения правила сравнения дробей с одинаковыми знаменателями.
Пример.
Какая дробь больше: 65/126 или 87/126?
Решение.
Знаменатели сравниваемых обыкновенных дробей равны, а числитель 87дроби 87/126 больше числителя 65 дроби 65/126 (при необходимости смотрите сравнение натуральных чисел). Поэтому, согласно правилу сравнения дробей с одинаковыми знаменателями, дробь 87/126 больше дроби 65/126.
.
6,3 - 3,6х = 3,1 - 3,2х
-3,6х + 3,2х = 3,1 - 6,3
-0,4х = -3,2
х = -3,2 : (-0,4)
х = 8
2) 4х +1/3 +1 = х - 2/7
4х + 1 1/3 = х - 2/7
4х - х = -2/7 - 1 1/3
3х = -34/21
х = -34/21 : 3
х = -34/63