М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
shpep
shpep
13.06.2020 04:51 •  Математика

Решите неравенство : f'(x) > 0 , если f(x) = -3x^3 + 6x^2-5x

👇
Ответ:
noybet444noybet
noybet444noybet
13.06.2020
F(x) = -3x³+6x²-5x
f'(x) = -9x²+12x-5

-9x²+12x-5 > 0
-9x²+12x-5 = 0
9x²-12x+5 = 0
D = 144-4*5*9 = 144-180 < 0

Ветки параболы -9х²-12х-5 = 0 направлены вниз, т.к. дискриминант < 0, то парабола не пересекает ось Ох => график не лежит в необходимой для решения 1 и 2 четверти => ответов нет

ответ: х є ∅
4,8(36 оценок)
Открыть все ответы
Ответ:
ichi2209
ichi2209
13.06.2020

Задача решается так:

1) Так как окружность описанная, то её центром служит точка пересечения серединных перпендикуляров к сторонам треугольника. пусть OD и OH - серединные перпендикуляры, O-центр окружности.EM - прямая, параллельная стороне AC.

2) Так как ΔABC - равносторонний, то <A=<B=<C=60°. Так как радиус AO-биссектриса по свойству радиуса описанной окружности, то <HAO = 60°:2 = 30°. Так как OH-серединный перпендикуляр, то рассмотрю ΔAHO,<H=90°. sin <HAO = OH/R;

sin 30° = 1/2. 1/2 = OH/2√3, откуда OH = 2√3/2 = √3

3)Теперь рассмотрю ΔOEH,<H = 90°. Поскольку EM|| AC, то <A = <HEO = 60° - соответственные.sin <HEO = OH/OE, откуда OE = OH/sin 60° = √3 : √3/2 = 2.

4)ΔEBO = ΔMBO - по катету и прилежащему к нему острому углу.

                 1. BO - общий

                 2.<ABD = <CBD - так как по св. ΔABC BD - биссектриса.

Из равенства их следует, что EM = 2OE = 2 * 2 = 4

 

4,8(79 оценок)
Ответ:
Элинка235
Элинка235
13.06.2020

Задача решается так:

1) Так как окружность описанная, то её центром служит точка пересечения серединных перпендикуляров к сторонам треугольника. пусть OD и OH - серединные перпендикуляры, O-центр окружности.EM - прямая, параллельная стороне AC.

2) Так как ΔABC - равносторонний, то <A=<B=<C=60°. Так как радиус AO-биссектриса по свойству радиуса описанной окружности, то <HAO = 60°:2 = 30°. Так как OH-серединный перпендикуляр, то рассмотрю ΔAHO,<H=90°. sin <HAO = OH/R;

sin 30° = 1/2. 1/2 = OH/2√3, откуда OH = 2√3/2 = √3

3)Теперь рассмотрю ΔOEH,<H = 90°. Поскольку EM|| AC, то <A = <HEO = 60° - соответственные.sin <HEO = OH/OE, откуда OE = OH/sin 60° = √3 : √3/2 = 2.

4)ΔEBO = ΔMBO - по катету и прилежащему к нему острому углу.

                 1. BO - общий

                 2.<ABD = <CBD - так как по св. ΔABC BD - биссектриса.

Из равенства их следует, что EM = 2OE = 2 * 2 = 4

 

4,8(54 оценок)
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ