Если сложить яблоки Бориса и Марата и разделить их на 4 (Марат+Борис+друг1+друг2), то получится целое число.
Итак, возможные варианты количества яблок: У Бориса 12,13,14 У Марата 10,11,12
Теперь будем методом "веера" складывать яблоки Бориса и Марата и получим ответ: 12+10=22 (не делится на 4) 12+11=23 (не делится на 4) 12+12=24 (делится на 4, ответ 6)
13+10=23 (не делится на 4) 13+11=24 (делится на 4, ответ 6) 13+12=25 (не делится на 4)
14+10=24 (делится на 4, ответ 6) 14+11=25 (не делится на 4) 14+12=26 (не делится на 4)
В результате имеем следующие возможные количества яблок у обоих мльчиков Борис Марат 12 12 13 11 14 10
Подобные члены. Это члены с переменной одного порядка, члены с одинаковыми переменными или свободные члены (члены, не содержащие переменную). Другими словами, подобные члены включают одну переменную в одной и той же степени, включают несколько одинаковых переменных или не включают переменную вовсе. Порядок членов в выражении не имеет значения.Например, 3x2 и 4x2 - это подобные члены, так как они содержат переменную «х» второго порядка (во второй степени). Однако х и x2 не являются подобными членами, так как содержат переменную «х» разных порядков (первого и второго). Точно так же -3yx и 5хz не являются подобными членами, так как содержат разные переменные.Упрощение алгебраических выражений является одним из ключевых моментов изучения алгебры и чрезвычайно полезным навыком для всех математиков. Упрощение позволяет привести сложное или длинное выражение к простому выражению, с которым легко работать. Базовые навыки упрощения хорошо даются даже тем, кто не в восторге от математики. Соблюдая несколько простых правил, можно упростить многие из наиболее распространенных типов алгебраических выражений без каких-либо специальных математических знаний.
Разложение на множители. Это нахождение таких чисел, произведение которых приводит к исходному числу. Любое исходное число может иметь несколько множителей. Например, число 12 может быть разложено на следующий ряд множителей: 1 × 12, 2 × 6 и 3 × 4, поэтому можно сказать, что числа 1, 2, 3, 4, 6 и 12 являются множителями числа 12. Множители совпадают с делителями, то есть числами, на которые делится исходное число.Например, если вы хотите разложить на множители число 20, запишите это так: 4 × 5.Обратите внимание, что при разложении на множители переменная учитывается. Например, 20x = 4(5x).Простые числа не могут быть разложены на множители, потому что они делятся только на себя и на 1.Запомните и соблюдайте порядок выполнения операций во избежание ошибок.
б) 30.5 + 17.4 = 47.9
в) 29 - 1.8 = 27.2