Пошаговое объяснение:
а) Первый Пусть из некоторого города A нельзя попасть в некоторый город B по железной дороге. Рассмотрим множество M всех городов, в которые можно попасть из города A по железной дороге. Множество городов, не входящих в M, обозначим N. Множество N непусто, поскольку в нём содержится город B. Ясно, что из городов множества M нельзя попасть в города множества N по железной дороге.
Докажем, что из каждого города в любой другой можно попасть авиарейсами.
Если один из городов принадлежит M, а другой – множеству N, то между ними есть прямая авиалиния.
Пусть два города принадлежат M. Тогда из первого города можно попасть авиарейсом в некоторый город множества N, а оттуда (также самолётом) – во второй город.
Аналогично рассматривается случай, когда оба города принадлежат N.
Второй См. г).
б) См. в).
в) Пусть для города X это не так: есть город A, в который из X нельзя долететь за два "хода", и город B, в который из X нельзя доехать на поезде за два "хода" (значит, X и B связаны авиалинией). Пусть A и B связаны авиалинией. Тогда в X из A в можно добраться по воздуху с пересадкой в B. Противоречие.
Аналогично к противоречию приводит и предположение о том, что A и B связаны железной дорогой.
г) Пусть из A в нельзя долететь за три "хода", а из C в D нельзя доехать на поезде за три "хода". Тогда A и B связаны железной дорогой, а C и D – авиалинией.
Пусть A и C связаны железной дорогой. Тогда B и D связаны авиалинией (иначе был бы ж/д маршрут CABD), а A и D – железной дорогой (иначе есть авиамаршрут BDA). Противоречие: есть ж/д маршрут CAD.
Аналогично к противоречию приводит и предположение о том, что A и C связаны авиалинией.
Всё просто.
Пошаговое объяснение:
а) 8*4=32 - умножаем цену билета на количество людей, находящихся одновременно в лодке, получая от этого действия сумму, выручаемую Мишей за каждую поездку.
б) Так как 1 час = 60 минут, то:
1. 60*3=180 - умножаем количество минут в 1 часе на количество часов, на которые Миша арендует лодку в день, получая количество минут, на которые Миша арендует лодку в день.
2. 180:20=9 - делим количество минут, на которые Миша арендует лодку в день на количество минут, которые длится 1 прогулка на арендованной Мишей лодке, получая число максимальных прогулок на арендованной Мишей лодке, которые за это время может организовать Миша.
г) Так как Миша работает всего 3 часа в день, то:
1. 32*9=288 - умножаем сумму, выручаемую Мишей за каждую поездку на число максимальных прогулок на арендованной Мишей лодке, которые за это время может организовать Миша, получая наибольшую сумму, которую может заработать Миша за один день, перевозя людей, 3 часа, на арендованной им лодке, без вычета арендной платы.
2. 288-100=188 - из наибольшей суммы, которую может заработать Миша за один день, перевозя людей, 3 часа, на арендованной им лодке, без вычета арендной платы вычитаем арендную плату, получая наибольшую сумму, которую может заработать Миша за один день, перевозя людей, 3 часа, на арендованной им лодке, с вычетом арендной платы.
2 коробка-? на 14 пач. больше
3 коробка- ? в 2 раза меньше, чем во второй
1) 26+14=40 (пач.) - во 2 коробке
2)40:2=20 (пач.) -в 3 коробке
ответ: в 3 коробке было 20 пачек печенья.