М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
mketol4663
mketol4663
20.06.2022 18:39 •  Математика

Масса сазана,окуня и леща2кг430г.при этом масса сазана и окуня1кг600г.а масса окуня и леща составляет7/10 веса сазана и окуня.найди массу каждой рыбы в отдельности.

👇
Ответ:
liza1367
liza1367
20.06.2022
1) 1600:10*7=1120(кг)-масса окуня и леща
2) 2430-1120=1310(кг)-масса сазана
3) 2430-1600=830(кг)-масса леща
4) 830+1310=2140(кг)-масса сазана и леща
5) 2430-2140=290(кг)-масса окуня 
4,6(20 оценок)
Открыть все ответы
Ответ:
SerAv2000
SerAv2000
20.06.2022

В прямоугольном треугольнике АВН определим величину угла АВН. Угол АВН = 180 – АНВ – ВАН = 180 – 90 – 60 = 300. Тогда катет АН лежит против угла 300 и равен половине длины гипотенузы АВ. АН = 8 / 2 = 4 см.

Тогда ВН2 = АВ2 – АН2 = 64 – 16 = 48.

ВН = 4 * √3 см.

По условию, ВН делит АД пополам, тогда АН = ДН = 4 см.

АД = АН + ДН = 4 + 4 = 8 см.

ВСДН – прямоугольник, так как ВН высота, а СДА = 900 по условию, тогда СВ = ДН = 4 см.

Определим площадь трапеции.

Sавсд = (СВ + АД) * ВН / 2 = (4 + 8) * 4 * √3 / 2 = 24 * √3 см2.

ответ: Площадь трапеции равна 24 * √3 см2.

4,5(40 оценок)
Ответ:

y=C_{1}+C_{2}e^{3x}+xe^{3x}, \quad C_{1}, C_{2}-const;

Пошаговое объяснение:

y''-3y'=3e^{3x};

Это неоднородное уравнение. Сначала решим соответствующее ему однородное уравнение:

y''-3y'=0;

Составим и решим характеристическое уравнение:

\lambda ^{2}-3 \lambda =0;

\lambda \cdot (\lambda -3)=0;

\lambda=0 \quad \vee \quad \lambda -3=0;

\lambda=0 \quad \vee \quad \lambda =3;

Имеем 2 различных действительных корня. Запишем общее решение однородного уравнения:

y=C_{1}e^{\lambda_{1}x}+C_{2}e^{\lambda_{2}x}, \quad \lambda_{1}=0, \quad \lambda_{2}=3 \Rightarrow y=C_{1}e^{0 \cdot x}+C_{2}e^{3x}=C_{1}+C_{2}e^{3x};

Вернёмся к неоднородному уравнению.

Показатель степени экспоненты содержит коэффициент, равный одному из корней характеристического уравнения, поэтому частное решение будем искать в виде

y=3Cxe^{3x};

Найдём первую и вторую производные:

y'=(3Cxe^{3x})'=3C \cdot (xe^{3x})'=3C \cdot (x' \cdot e^{3x}+x \cdot (e^{3x})')=3C \cdot (e^{3x}+3xe^{3x});

y''=(y')'=(3C \cdot (e^{3x}+3xe^{3x}))'=(3C)' \cdot (e^{3x}+3xe^{3x})+3C \cdot (e^{3x}+3xe^{3x})'=

=3C \cdot ((e^{3x})'+3 \cdot (xe^{3x})')=3C \cdot (3e^{3x}+3 \cdot (e^{3x}+3xe^{3x}))=3C \cdot (6e^{3x}+9xe^{3x});

Подставим полученные производные в исходное уравнение:

3C \cdot (6e^{3x}+9xe^{3x})-3 \cdot 3C \cdot (e^{3x}+3xe^{3x})=3e^{3x};

e^{3x} \cdot (3C \cdot (6+9x))-e^{3x} \cdot (9C \cdot (1+3x))=3e^{3x};

3C \cdot (6+9x)-9C \cdot (1+3x)=3;

18C+27Cx-9C-27Cx=3;

9C=3;

C=\dfrac{1}{3};

y=3 \cdot \dfrac{1}{3} \cdot xe^{3x}=xe^{3x};

Проверим, верно ли найдено частное решение неоднородного уравнения. Воспользуемся ранее найденными производными:

y=xe^{3x}, \quad y'=e^{3x}+3xe^{3x}, \quad y''=6e^{3x}+9xe^{3x}:

6e^{3x}+9xe^{3x}-3 \cdot (e^{3x}+3xe^{3})=3e^{3x};

6e^{3x}+9xe^{3x}-3e^{3x}-9xe^{3x}=3e^{3x};

3e^{3x}=3e^{3x};

Частное решение найдено верно.

Общим решением неоднородного дифференциального уравнения является сумма общего решения однородного ДУ и частного решения неоднородного ДУ:

y=C_{1}+C_{2}e^{3x}+xe^{3x}, \quad C_{1}, C_{2}-const;

4,4(22 оценок)
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ