Поставь лайк и отметить как лучшее решение
а) |7х|=24,5 (вычеслить)
7×|х|= 24,5 (разделяем обе стороны)
|х|=3,5 (рассмотрим все возможные случаи)
х=3,5 х=–3,5 (уравнения имеет 2 решения)
Х1=3,5 Х2=–3,5
б) |5х+2,1|=0,2 (рассмотреть все возможные случаи)
5х+2,1=0,2
5х+2,1=–0,2 (решить уравнения)
х=–0,38
х=–0,46 (уравнения имеет 2 решения)
Х1=–0,38 Х2=–0,46
с) |9х+27|-4=0,5 (перенести константу в правую часть уравнения)
|9х+27|=0,5+4 (вычислить)
|9х+27|=4,5 (рассмотреть все возможные случаи)
9х+27=4,5
9х+27=–4,5 (решить уравнения)
х=–2,5
х=–3,5 (уравнения имеет 2 решения)
Х1=–3,5 Х2=–2,5
Поставь лайк и отметить как лучшее решение
-2х^2+17х-21 = 0
Квадратное уравнение, решаем относительно x: Ищем дискриминант:
D=17^2-4*(-2)*(-21)=289-4*(-2)*(-21)=289-(-4*2)*(-21)=289-(-8)*(-21)=289-(-8*(-21))=289-(-(-8*21))=289-(-(-168))=289-168=121;Дискриминант больше 0, уравнение имеет 2 корня:
x₁=(√121-17)/(2*(-2))=(11-17)/(2*(-2))=-6/(2*(-2))=-6/(-2*2)=-6/(-4)=-(-6/4)=-(-1.5)=1,5;x₂=(-√121-17)/(2*(-2))=(-11-17)/(2*(-2))=-28/(2*(-2))=-28/(-2*2)=-28/(-4)=-(-28/4)=-(-7)=7.
Числитель -2х^2+17х-21 = -2(х - 1,5)(х - 7) = (3 - 2х)(х - 7).
х^2-5х-14 = 0.
Квадратное уравнение, решаем относительно x: Ищем дискриминант:
D=(-5)^2-4*1*(-14)=25-4*(-14)=25-(-4*14)=25-(-56)=25+56=81;Дискриминант больше 0, уравнение имеет 2 корня:
x₁=(√81-(-5))/(2*1)=(9-(-5))/2=(9+5)/2=14/2=7;x₂=(-√81-(-5))/(2*1)=(-9-(-5))/2=(-9+5)/2=-4/2=-2.
Знаменатель х^2-5х-14 = (х + 2)(х - 7).
Заданную функцию можно представить в таком виде:
При условии, что х не равен 7, можно сократить дробь:
Отсюда видно, что при х = -2 функция не имеет значения, поэтому прямая у=-2 не имеет с графиком данной функции общих точек.