Пошаговое объяснение:
y'+2xy'+2y=1
Представим в виде:
2xy'+2y+y' = 1 - это неоднородное уравнение.
Сделаем замену переменных: y=u*v, y' = u'v + uv'.
2·u·v+u·v'+u'·v+2·x·(u·v'+u'·v) = 1
Выберем переменную v так, чтобы выполнялись условия:
1. u(2·v+2·v'·x+v') = 0
2. 2·u'·v·x+u'·v = 1
1. Приравниваем u=0, находим решение для:
2·v+2·v'·x+v' = 0
Представим в виде:
v' = -2·v/(2·x+1)
Преобразуем уравнение так, чтобы получить уравнение с разделяющимися переменными:
Интегрируя, получаем:
ln(v) = -ln(2·x+1)
v = 1/(2·x+1)
2. Зная v, Находим u из условия: 2*u'*v*x+u'*v = 1
2·u'·x/(2·x+1)+u'/(2·x+1) = 1
u' = 1
Из условия y=u*v, получаем:
y = u·v = (C+x)/(2·x+1)
это решение системы
х²-5х+6>0; х²-5х+6=0; по теореме, обратной теореме ВИЕТА, находим корни уравнения х=2;х=3, значит, х²-5х+6=(х-2)(х-3), тогда
(х-2)(х-3)>0
(2-x)/(x-3)≥0⇒(x-2)/(x-3)≤0
второе неравенство равносильно системе
(x-2)(x-3)≤0;
х≠3
Т.о., для решения вопроса области определения данной функции надо решить такую систему
(х-2)(х-3)>0
(x-2)(x-3)≤0;
х≠3
как видим, одновременно произведение (х-2)(х-3) и быть большим или равным нулю и быть меньшим нуля при х≠3, быть не может. поэтому данная функция не определена ни при каких значениях х.
2x=-3-2
2x=-5
x=-5/2
2)2^2=7x
4=7x
7x=4
x=4/7
3) 5x+2=5
5x=5-2
5x=3
x=3/5