ответ: Два розвязка .
Якщо на одній прямій накреслить перше коло О₁ радіус якого дорівнює 22 см, то отримаємо відрізки перетинання кола з прямою АО₁ та О₁В. При цьму відрізки АО₁ = О₁В = r = 22 см.
На цій же прямій відкладем відрізок ВО₂, який дорівнює 42 см, та накреслим коло радіус якого дорівнює довжині відрізка ВО₂. Таким чином отримаємо другий відрізок О₂С.
При цьму відрізки ВО₂ = О₂С = r = 42 см.
Два кола торкаються, тоді відстань між центрами цих кіл дорівнює:
О₁В + ВО₂ = 22 + 42 =64 см
Відстань між центрами цих кіл О₁ та О₂ дорівнює 44 см.
Накреслим коло О₃ з радіусом 32 см. Проведемо діаметр цього кола, та отримаємо відрізки DO₃ та О₃N, при цьому DO₃ = О₃N = r = 22 см.
На відрізку О₃N відкладемо відрізок NО₄ довжиною 42 см.
Накреслим коло с центром О₄ радіусом довжини відрізка = 42 см.
На відрізку DN отримаємо відрізки МО₄ та О₄N при цьому МО₄ = О₄N = r = 42см.
Два кола торкаються, тоді відстань між центрами цих кіл дорівнює.
Так як відрізок О₃О₄ належить відрізку O₃N, тоді можемо знайти відрізок О₃О₄.
О₃М = О₃N - MO₄ - O₄N
O₃M = 22 - 42 - 42 = 22 cм
O₃O₄ = O₃M + MO₄
O₃O₄ = 22 + 42 = 64 см
Відстань між центрами цих кіл О₃ та О₄ дорівнює 20 см.
Пошаговое объяснение:
Дано:
L=8 см
∠β = 30°
Найти:
V=?
S=?
Обычно, в треугольной пирамиде проекция бокового ребра на основание равна две третьих высоты. (2/3)*h (это высота основания пирамиды).
1) (2/3)*h=8*cos 30°=8√3/2=4√3 см
2) Высота основания h=(3/2)*4√3=6√3 см
3) а=h/cos 30°=6√3/(√3/2)=12 см (Сторона основания)
4) Н= L*sin 30°=8*(1/2)=4 см (Высота пирамиды)
5) А=√(Н² + (h/3)²)=√(16 + (6√3/3)²)=√(16 + 12)=√28=2√7≈5,292 см (Апофема "А" боковой грани)
6) S1=a²√3/4=12²√3/4=36√3≈62,3538 см² (Площадь основания)
7) S2=(1/2)РА=(1/2)*(3*12)*(2√7)=36√7 ≈ 95,25 см². (Площадь боковой поверхности)
8) S=S1+S2=62,3538+95,247=157,6008 см² (Вся поверхность)
9) V=(1/3)SoH=(1/3)*62,3538*4=83,1384 см³
ответ: S=157,6008 см², V=83,1384 см³.