Пошаговое объяснение:
взвешивание 1
на чаши по 50 монет и она осталась
если после взвешивания 1 вес чаш одинаков, то фальшивая монета не на весах.
тогда берем эту фальшивку и меняем на нее, например в правой чаше, какую-нибудь нормальную монету. теперь, мы точно знаем, что в правой чаше фальшивка.
взвешивание 2
если правая чаша тяжелее => фальшивка тяжелее
если правая чаша легче => фальшивка легче
если же после взвешивания 1 вес чаш не одинаков, значит фальшивка лежит на чашах, но мы не знаем, на какой
тогда берем более тяжелу чашу и делим монетки поровну на 2 чаши и
взвешивание 2
если вес чаш одинаковый => фальшивка осталась на "легкой" чаше и значит она весит легче (на тяжелой чаше все монеты были нормальные)
если вес чаш не одинаковый => фальшивка на одной из чаш (а поскольку в первом взвешивании эти чаши сумарно весили больше, значит и фальшивка тяжелее нормальных монет
tg x = l, x ≠ p/2 +pn, n ∈Z
l^2 + 2 l - 3 = 0
D/4 = 1+3 = 4;
l(1,2) = -1+- 2/1 = -3; 1;
tg x = -3
x= arctg -3 + pm, m ∈ Z
tg x = 1
x= p/4 + pk, k ∈ Z.