1)чтобы 2 литра налить в кастрюлю нужно налить воду в сосуд с вместительностью 5 литров и перелить из него воду в сосуд вмещающий 3 литра, тогда в сосуде в который вмещается 5 литров стантся ровно 2 литра
2)а чтобы налить 4 литра в кастрюлю нужно 2 раза повторить первый пункт.
3)чтобы налить в кастрюлю 1 л нужно: набрать воду в сосуд вместительностью 3 литра и вылить в сосуд 5 литров, затем снова набираем воду в сосуд вмещающий 3 литра и переливаем в сосуд вмещающий 5 литров тогда 1 литр не вместится и переливаем его в кастрюлю.
1)чтобы 2 литра налить в кастрюлю нужно налить воду в сосуд с вместительностью 5 литров и перелить из него воду в сосуд вмещающий 3 литра, тогда в сосуде в который вмещается 5 литров стантся ровно 2 литра
2)а чтобы налить 4 литра в кастрюлю нужно 2 раза повторить первый пункт.
3)чтобы налить в кастрюлю 1 л нужно: набрать воду в сосуд вместительностью 3 литра и вылить в сосуд 5 литров, затем снова набираем воду в сосуд вмещающий 3 литра и переливаем в сосуд вмещающий 5 литров тогда 1 литр не вместится и переливаем его в кастрюлю.
Это треугольник, его углы:
A(-4; 3); B(-4; -4); C(3; 3).
2) Теперь ищем экстремумы функции.
Необходимое условие: обе частные производные равны 0.
dz/dx=-y+1=0; y=1
dz/dy=-x-2=0; x=-2
Точка M(-2; 1) попадает в область D.
3) Достаточное условие.
A=d2z/dx^2=0
B=d2z/(dxdy)=-1
C=d2z/dy^2=0
D=A*C-B^2=0*0-(-1)^2=-1<0
Экстремума в этой точке нет.
Это седловая точка.
На всякий случай найдём значение в ней.
z(M)=-(-2)*1-2-2*1+4=2-2-2+4=2
4) Наибольшие и наименьшие значения имеет смысл искать в углах треугольника.
В остальных точках функция возрастает или убывает.
z(A)=-(-4)*3-4-2*3+4=12-4-6+4=6
z(B)=-(-4)(-4)-4-2(-4)+4=-16-4+8+4=-8
z(C)=-3*3+3-2*3+4=-9+3-6+4=-8
Очевидно, в т.А максимум, а в т.В и т.С минимумы.