Формулы приведения работают так: надо определить, какой будет знак (если угол a в первой четверти), поставить его, а потом поменять название на кофункцию, если прибавляется или вычитается нечетное число π/2 (или 90°), и оставить название, если целое число π (180°).
1) Если повернуть угол α на π/2, получится угол II четверти, в ней синус положителен. Прибавляли π/2, sin меняем на cos.
sin(π/2 + α) = cos α
2) Прибавление 2π — поворот на полный круг, получаем угол -α из IV четверти. в ней косинус положителен. Поворот на целое число π, не меняем название функции.
cos(π - α) = cos α
3) угол из IV четверти, ctg < 0, название не меняется
ctg(360° - α) = -ctg α
4) III четверть, cos < 0, название меняется
cos(3π/2 + α) = -sin α
5) Прибавлние полного оборота ничего не меняет.
sin(2π + α) = sin α
При поднесении дроби к степени подноситься и числитель и знаменатель. Поделим пример на несколько действий для упрощения вычислений.
(2 2\3) ^ 5 * (3\8) ^ 6.
1) (2 2\3) ^ 5 = (8/3) ^ 5 = 8^5/3^5 = 32768/243;
2) (3\8) ^ 6 = 3^6/8^6 = 729/262144;
3) 32768/243 * 729/262144 = 23887872/63700992, сокращаем дробь на 7962624(на 32768(или 2^15) и потом на 243(или 3^5).
23887872/63700992 = 3/8.
Есть второй вариант, при котором мы будем иметь дело с меньшими цифрами, и используем для этого одно из правил вычислений со степенью.
(8/3) ^ 5 * (3/8) ^ 6 = (8/3) ^ 5 * (3/8) ^ 5 * (3/8) = (8/3 * 3/8) ^ 5 * (3/8)= 24/24 ^ 5 * 3/8= 1 * 3/8 = 3/8.
(3/4)ˣ⁻³≤(3/4)⁻²ˣ⁻⁵
основание 3/4 меньше 1, поэтому данное неравенство равносильно неравенству:
х-3 ≥ -2х-5
х+2х ≥ -5+3
3х ≥ -2
х≥ -2/3
х∈[-2/3; +∞)