Сумма 100 разных натуральных чисел 5130. может ли среди них быть число 220? может ли не быть числа 12? какое наименьшее число чисел, кратное 12 может быть среди этих чисел?
Посмотрим, чему равна сумма первых 100 натуральных чисел. Считаем, как сумму арифметической прогрессии, у которой a1 = 1, а шаг d = 1. Сумма получается Sn = (1/2)*(2*1 + 1*(100-1))*100 = 5050, Если среди 100 разных натуральных чисел будет присутствовать число 220, то найденная сумма увеличится и станет равной 5050 + 220 - 100 = 5170. Т.е.вместо числа 100 (как самое большое) использовали число 220. Это означает, что среди 100 чисел, сумма которых равна 5130, числа 220 нет. Посмотрим, может ли не быть там числа 12. Отнимаем от суммы 12 и добавляем следующее самое маленькое, которое равно 101. Сумма будет такая 5050 - 12 +101 = 5139. Т.е. если числа 12 не будет, то минимальная сумма 100 чисел будет превышать 5130. Значит, число 12 там должно быть обязательно. Простой расчёт показывает, что наименьшего числа там нет 21. 5050 - 21 + 101 = 5130. Также может не быть числа 24: 5050 - 24 + 104 = 5130. Это число кратное 12. Наименьшее число, кратное 12, есть само число 12. (Кстати, вопрос не совсем понятен из-за двух, идущих подряд слов "число чисел"). Т.е. если наименьшее кратное 12, которое должно обязательно быть - это 12, если, которого может не быть, то - 24.
Составим уравнение : (95-7х) : (60-6х) = 2 95-7х=2*(60-6х) 95-7х=120-12х 12х-7х=120-95 5х=25 х=25:5 х=5. ответ : 5часов. 2) 95-60=35зад ( больше решает задач) 35:7=5ч ( время для решения этих задач Ильхаму) 5*6=30зад( решит Сахиб за то же время) 95-35=60( останется решить Ильхаму через 5ч) 60-30 =30(останется решить Сахибу через 5 ч) 60:30=2раза (больше останется решить Ильхаму , чем Сахибу). ответ: через 5 часов.
С десятичными дробями есть еще такой умножаем уменьшаемое и вычитаемое на 10, 100 или 1000 так, чтобы и первое, и второе оказались целыми числами. Проводим вычитание и после этого разность делим на то же число, на которое умножали:
Если среди 100 разных натуральных чисел будет присутствовать число 220, то найденная сумма увеличится и станет равной 5050 + 220 - 100 = 5170. Т.е.вместо числа 100 (как самое большое) использовали число 220. Это означает, что среди 100 чисел, сумма которых равна 5130, числа 220 нет.
Посмотрим, может ли не быть там числа 12. Отнимаем от суммы 12 и добавляем следующее самое маленькое, которое равно 101. Сумма будет такая 5050 - 12 +101 = 5139. Т.е. если числа 12 не будет, то минимальная сумма 100 чисел будет превышать 5130. Значит, число 12 там должно быть обязательно.
Простой расчёт показывает, что наименьшего числа там нет 21. 5050 - 21 + 101 = 5130. Также может не быть числа 24: 5050 - 24 + 104 = 5130. Это число кратное 12.
Наименьшее число, кратное 12, есть само число 12. (Кстати, вопрос не совсем понятен из-за двух, идущих подряд слов "число чисел"). Т.е. если наименьшее кратное 12, которое должно обязательно быть - это 12, если, которого может не быть, то - 24.