М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
raisa3yusif
raisa3yusif
10.03.2023 18:59 •  Математика

Решить логарифмическое ! логарифм от (1+логарифм в квадрате от x по основанию 7) по основанию (1+логарифм от 7 по основанию x) меньше либо равен 1. правильный ответ: (0; 1/7) и (1; 7]. у меня вдобавок получается еще и (1/7; 1). почему этот промежуток не входит?

👇
Ответ:
hhjjkh
hhjjkh
10.03.2023
Требуется решить следующее неравенство:
log_{1 + log_{x} 7} (1 + log_{7} ^{2} x) \leq 1

Для начала немного упростим задачу: введём замену. Она очевидна.
Пусть log_{7} x = t
Тогда наше неравенство принимает вид:
 
log_{1 + \frac{1}{t} } (1+ t^{2} ) \leq 1

Это неравенство - хороший кандидат на использование метода замены множителя. Рабочую формулу метода для логарифмических неравенств Вы можете посмотреть в сети Интернет, здесь же я только использую её.
Кроме того, я использовал то, что если в логарифме переставить местами основание и логарифмируемое выражение, то получатся взаимнообратные числа, что я и учёл при замене. Используем метод:

log_{1 + \frac{1}{t} }(1 + t^{2} ) \leq log_{1 + \frac{1}{t} } (1 + \frac{1}{t} )
\left \{ {{(1 + \frac{1}{t} - 1)(1 + t^{2} - (1 + \frac{1}{t} ) \leq 0 )} \atop {1 + \frac{1}{t} \ \textgreater \ 0 }} \right.

Здесь помимо рабочей формулы(она первая в системе), я обязан был учесть ещё и ОДЗ неравенства. Но логарифмируемое выражение и так всегда больше 0, поскольку к 1 прибавляется квадрат - заведомо положительное число, а основание никогда не равно 1, поскольку для этого частное 1/t должно быть равно 0, но это также никогда не произойдёт. Поэтому дополнительно к формуле требуем лишь, чтобы основание было больше 0.

Дальше решаем каждое из неравенство по очереди:
\frac{ t^{2} - \frac{1}{t} }{t} \leq 0
Это обыкновенное неравенство, решаемое методом интервалов, поэтому
\frac{ t^{3} - 1 }{ t^{2} } \leq 0 \\ \frac{(t - 1)( t^{2} + t + 1) }{ t^{2} } \leq 0 \\ \frac{(t - 1)}{ t^{2} } \leq 0
Здесь я разделил на t^{2} + t + 1, не изменив знак неравенства. Это связано с тем, что данный трёхчлен всюду положительный(дискриминант отрицательный, ветви параболы направлены вверх, то есть, парабола трёхчлена полностью лежит над осью OX).
Ну и последнее неравенство легко решается методом интервалов.

t(-, 0)(0, 1]
Теперь решаем второе неравенство(сразу приводим левую часть к общему знаменателю): \frac{t + 1}{t} \ \textgreater \ 0 \\ t(-, -1)(0, +∞)
Решение системы, как известно, пересечение решений обоих неравенств. Следовательно, решение системы
t ∈ (-∞, -1)(0, 1]

Теперь,когда мы получили окончательные решения для t, можно вернуться к переменной x, подставив вместо t логарифм и решив полученную СОВОКУПНОСТЬ неравенств.

log_{7} x \ \textless \ -1 или  0\ \textless \ log_{7} x \leq 1

Первое неравенство легко решается:
log_{7} x \ \textless \ log_{7} \frac{1}{7} \\ x \ \textless \ \frac{1}{7}
Вроде бы оно так, но при таких пробегах x вполне может уйти за 0 в отрицательную сторону, а для логарифма это - критично. Так что ограничим ещё и 0 слева и получим
0 \ \textless \ x \ \textless \ \frac{1}{7} - часть решения нашего неравенства.

Дальше решаем двойное неравенство. Его лучше записать как систему из левого неравенства и из правого неравенства. Решение, соответственно, есть пересечение решений обоих.

log_{7} x \ \textgreater \ 0 \\ log_{7} x \ \textgreater \ log_{7} 1 \\ x \ \textgreater \ 1 - а вот тут x уходит уже в сторону положительных чисел, так что подпирать нигде ничем не нужно.
log_{7} x \leq 1 \\ log_{7} x \leq log_{7} 7 \\ x \leq 7 - но и тут x уходит в отрицательном направлении, если зайти слишком далеко, то есть, опять подпираем нулём:
0 \ \textless \ x \leq 7
Коли двойное неравенство - система, ищем лишь пересечение решений.
1 \ \textless \ x \leq 7
Не забываем, что это ещё не всё. У нас было первое неравенство. Берём оба этих решения и ОБЪЕДИНЯЕМ их(решения совокупности именно объединяются), то есть, берём оба и записываем в ответ.
Итак, ответ состоит из двух частей, которые и пишем:

x∈(0, \frac{1}{7} )(1, 7] - это и есть ответ. Как видите, он вполне совпал с тем, что должно было быть.
4,5(39 оценок)
Открыть все ответы
Ответ:
Kinder2571
Kinder2571
10.03.2023

ответ:-71

Пошаговое объясне

-53+29-47.

Если следовать правилам положительных и отрицательных чисел, то как учат детей в школе минус на плюс, даёт минус, плюс на плюс, даёт плюс и т.д. Но нам это сейчас не нужно, так как это мы используем только при умножении.Как нас учили в школе, когда мы видели такие числа, мы произносили- от большего числа отнимаем меньшее число и ставим знак большего модуля. Значит первое действие выглядит вот так:

1)-53+29=-24- Это называется, сложение чисел с разными знаками.

Теперь перейдём ко второму действию. Теперь когда у нас получился ответ -24, мы к -47 прибовляем -24, Почему мы прибовляем? Потому что если смотреть по правилу то это выглядит вот так: сложение чисел с одинаковыми знаками. Склалываем и ставим их общий знак. Смотрим:

2)-24-47=-71.

Пошаговое объясне

4,5(86 оценок)
Ответ:
Touka1337
Touka1337
10.03.2023

1) ×8,43                       2)54,29×1000= 54290

      5,7

+   5901

   4215

 48,051

3)37,8:100=0,378       4) 8⊥ 32  = 0,25

                                       0_

                                        80

                                        64_

                                        160

                                        160

                                             0

5)3,22:2,8=   32,2⊥28  =1,15

                    28  

                      42

                       28  

                       140

                      140

                           0

6) 15:0,75=    1500:75=20

4,6(2 оценок)
Это интересно:
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ