я не знаю я не знаю я не знаю я не знаю я не знаю я не знаю я не знаю я не знаю я не знаю я не знаю я не знаю я не знаю я не знаю я не знаю я не знаю я не знаю я не знаю я не знаю я не знаю я не знаю я не знаю я не знаю я не знаю я не знаю я не знаю я не знаю я не знаю я не знаю я не знаю я не знаю я не знаю я не знаю я не знаю я не знаю я не знаю я не знаю я не знаю я не знаю я не знаю я не знаю я не знаю я не знаю я не знаю я не знаю я не знаю я не знаю я не знаю я не знаю я не знаю я не знаю я не знаю я не знаю я не знаю я не знаю я не знаю я не знаю я не знаю я не знаю я не знаю я не знаю я
Рассмотрите такое решение (для чертежа нет возможности): 1. Парабола с функцией g(x) будут пересекаться в точках (-1;1) и (1;1). 2. По условию искомая площадь расположена внутри прямой g=1 и параболы х². Поэтому она будет вычисляться из разности прямоугольника со сторонами 2х1 и площади, которая под параболой в пределах от -1 до +1. 3. Площадь фигуры можно найти из удвоенного интеграла с пределами от 0 до 1 (так как относительно оси ординат парабола х² симметрична, то же относится к прямой g=1), вместо пределов от -1 до +1:
a2=1/2lg31=lg√31
a3=lg(2^x+1_
d=a2-a1=a3-a2
lg√31-lg(2^x-1)=lg(2^x+1)-lg√31
lg[√31/(2^x-1)]=lg[(2^x+1)/√31]
√31/(2^x-1)=(2^x+1)/√31
2^2x-1=31
2^2x=32
2^2x=2^5
2x=5
x=2,5