Пошаговое объяснение:
Задача 1
Дано:
ν = 0,1 моль
λ = 9,01·10⁻¹³ с⁻¹ - постоянная распада
Nₐ = 6,02·10²³ моль⁻¹ - постоянная Авогадро
A - ?
Активность:
A₀ = λ·N₀
Число атомов из формулы:
ν = N₀/Nₐ → N₀ = ν·Nₐ
N₀ = 0,1·6,02·10²³ = 6,02·10²²
Имеем:
A₀ = λ·N₀ = 9,01·10⁻¹³·6,02·10²³ = 5,4·10¹¹ Бк
Задача 2
Дано:
m = 0,2 г = 0,2·10⁻³ кг
M = 235·10⁻³ кг/моль
λ = 3,14·10⁻¹⁷ c⁻¹
А₀ - ?
Количество вещества:
ν = m / M = 0,2·10⁻³ / 235·10⁻³ = 850·10⁻⁶ моль
N₀ = ν·Nₐ = 850·10⁻⁶·6,02·10²³ = 5,1·10²⁰
Активность:
A₀ = λ·N₀ = 3,14·10⁻¹⁷·5,1·10²⁰ = 16 000 Бк
Задача 3
Дано:
A₀ = 5 Ки = 5·3,7·10¹⁰ Бк = 1,85·10¹¹ Бк
λ = 1,37·10⁻¹¹ c⁻¹
M = 226·10⁻³ кг/моль - молярная масса радия
m - ?
A₀ = λ·N₀
Отсюда:
N₀ = A₀/λ = 1,85·10¹¹ / 1,37·10⁻¹¹ ≈ 1,35·10²²
Из формулы:
m/M = N₀/Nₐ
m = M·N₀/Nₐ = 226·10⁻³·1,35·10²² / 6,02·10²³ ≈ 0,005 кг или 5 г
Задача 4
Дано:
n = 8
t = 11,4 сут
Т - ?
Из формулы:
n = t / T
Отсюда:
T = t / n = 11,4 / 8 ≈ 1,4 сут
5(х - 26) = 3х
5х - 130 = 3х
2х = 130
х = 65 (км/ч) скорость автомобиля.
х - 26 = 65 - 26 = 39 (км/ч) - скорость автобуса.
ответ: Скорость автомобиля равна 65 км/ч, а скорость автобуса 39 км/ч.
Для биссектрисы есть формула:
Здесь а и b - катеты, с - гипотенуза, p = (a+b+c)/2 - полупериметр.
Сначала найдем катеты.
c = 61; b = 1,2*a - один катет на 20% больше другого. По т. Пифагора
a^2 + b^2 = c^2
a^2 + (1,2*a)^2 = a^2 + 1,44*a^2 = 2,44*a^2 = 61^2
61*0,04*a^2 = 61^2
a^2 = 61/0,04 = 61*25
a = 5√61 - это короткий катет
b = 1,2*a = 1,2*5√61 = 6√61 - это длинный катет
p = (a+b+c)/2 = (5√61 + 6√61 + 61)/2 = (11√61 + 61)/2
p - c = (11√61 + 61)/2 - 61 = (11√61 - 61)/2
Подставляем все это в формулу биссектрисы
ответ: катеты a = 5√61; b = 6√61; биссектриса L(c)=10/11*√915