ответ: дальность броска француза составляет 66% от броска американца.
Если обозначить дальность броска американца за х. Тогда дальность броска русского равна 1,13х (по задаче).
Теперь нужно найти дальность броска немца (дальность броска русского делим на 1,21, так как бросок русского составляет 121% от броска немца):
1,13х : 1,21 = (113/121)x.
Теперь находим дальность броска француза (умножаем дальность броска немца на 0,71, так как дальность броска француза составляет 71% от броска немца):
(113/121)х * 0,71 = (8023 / 12100)x = 0.66305785124...
Теперь сравниваем дальность броска американца и француза:
Американец: 1х; 100%.
Француз: 0.66305785124 ... х; ≈ 66%.
Следовательно, дальность броска француза составляет 66% от броска американца.
x - 1 = 1 + x(1 - 2a) + ax^2
ax^2 + x(1 - 2a - 1) + 2 = 0
ax^2 - 2ax + 2 = 0
D = (-2a)^2 - 4*a*2 = 4a^2 - 8a = 4(a^2 - 2a) > 0
a ∈ (-oo; 0) U (2; +oo)
x1 = (2a - 2√(a^2-2a)) / (2a) = 1 - √(a^2-2a)/a = 1 - √[(a-2)/a]
x2 = (2a + 2√(a^2-2a)) / (2a) = 1 + √(a^2-2a)/a = 1 + √[(a-2)/a]
2) x = 1, тогда |1 - x| = 0
0 = 1 + (1 - 2a)*1 + a*1^2 = 1 + 1 - 2a + a = -a + 2
a = 2
Подставим a = 2 в уравнение и решим его.
|1 - x| = 1 + (1 - 4)x + 2x^2 = 1 - 3x + 2x^2
При x > 1 будет |1 - x| = x - 1
x - 1 = 1 - 3x + 2x^2
2x^2 - 4x + 2 = 0
2(x - 1)^2 = 0
x1 = x2 = 1 - не подходит, потому что x > 1
При x <= 1 будет |1 - x| = 1 - x
1 - x = 1 - 3x + 2x^2
2x^2 - 2x = 2x(x - 1) = 0
x1 = 0; x2 = 1 - два корня, а = 1 не подходит.
3) x <= 1, тогда |1 - x| = 1 - x
1 - x = 1 + (1 - 2a)x + ax^2
ax^2 + (1 - 2a + 1)x = 0
x*[ax + (2 - 2a)] = 0
x1 = 0; x2 = (2a - 2)/a = 2 - 2/a <= 1
2/a >= 1
2/a - 1 >= 0
(2 - a)/a >= 0
a ∈ (0; 2]
Итак, получаем следующее:
При a = 0 в 1) случае корней нет, в 3) случае будет 1 корень x = 0
При a = 2 в 1) случае будет 1 корень x = 0, в 3) случае 2 корня x1 = 0, x2 = 1.
В любом случае не больше 2 корней.
При a = 1 в 1) случае корней нет, во 2) случае корней нет,
в 3) случае x = 0
При a ∈ (0; 2) в 1) случае корней нет, в 3) случае 2 корня:
x1 = 0; x2 = (2a - 2)/a
При a ∈ (-oo; 0) U (2; +oo) в 1) .случае 2 корня:
x1 = 1 - √[(a-2)/a]; x2 = 1 + √[(a-2)/a]
Во 2) случае корней нет, в 3) случае корней нет.
ответ: 3 корня не будет ни при каком а