Имеем многочлен
Корнями многочлена называют корни уравнения
Имеем уравнение пятого порядка. Попробуем его решить с теоремы Безу.
Суть этой теоремы в том, что если уравнение вида с ненулевым свободным членом имеет некий корень , принадлежащий к множеству целых чисел, то этот корень будет делителем свободного члена.
Выпишем все делители свободного члена:
Подставим в корень уравнения и получим:
— неправда
Подставим в корень уравнения и получим:
— неправда
Подставим в корень уравнения и получим:
— правда
Следовательно, — один из корней уравнения. Теперь необходимо выполнить деление многочлена столбиком на
(см. вложение).
После этого исходное уравнение можно записать разложив на множители:
Решаем второе уравнение:
Рациональные корни:
Имеем многочлен
Корнями многочлена называют корни уравнения
Имеем уравнение пятого порядка. Попробуем его решить с теоремы Безу.
Суть этой теоремы в том, что если уравнение вида с ненулевым свободным членом имеет некий корень , принадлежащий к множеству целых чисел, то этот корень будет делителем свободного члена.
Выпишем все делители свободного члена:
Подставим в корень уравнения и получим:
— неправда
Подставим в корень уравнения и получим:
— неправда
Подставим в корень уравнения и получим:
— правда
Следовательно, — один из корней уравнения. Теперь необходимо выполнить деление многочлена столбиком на
(см. вложение).
После этого исходное уравнение можно записать разложив на множители:
Решаем второе уравнение:
Рациональные корни:
Любое число, которое делится на 24 и кратное 4, не будет делиться на 18
Например,
Это число 48
48:24=2
48:18=2,666666667
так же этим числом может быть число 96 (96:24=4; 96:18=5,3333333)
ответ: число 48, 96, 192