М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Гавноед24
Гавноед24
24.08.2021 19:08 •  Математика

Вычислте log по основанию 2 0,04+2 log по основанию 2 5

👇
Ответ:
MaksStilinski
MaksStilinski
24.08.2021
Log₂0,04+2log₂5=log₂0,04+log₂5²=log₂(0,04*5²)=log₂(0,04*25)=log₂1=0
4,4(76 оценок)
Открыть все ответы
Ответ:
Istominyura
Istominyura
24.08.2021

ответ: сторона квадрата равна 22.

Пошаговое объяснение:

Пусть сторона квадрата равна х. Если одну из сторон квадрата увеличить на 5, а соседнюю уменьшить на 3, то получим прямоугольник со сторонами х+5 и х-3.

Площадь квадрата равна: S=х²

Площадь прямоугольника равна: (х+5)(х-3) и на 29 больше площади квадрата.

Составим и решим уравнение:

(х+5)(х-3)-х²=29

х²+5х-3х-15-х²=29

2х-15=29

2х=29+15

2х=44

х=44:2

х=22  - сторона квадрата.

Проверим:

Площадь квадрата: 22²=484

Площадь прямоугольника: (22+5)(22-3)=27*19=513

513-484=29

4,8(39 оценок)
Ответ:
ivangladkikh
ivangladkikh
24.08.2021

я думаю что да

Пошаговое объяснение:

Имеется набор гирь, веса которых в граммах: 1, 2, 4,... , 512 (последовательные степени двойки) – по одной гире каждого веса. Груз разрешается взвешивать с этого набора, кладя гири на обе чашки весов.

  а) Докажите, что никакой груз нельзя взвесить этими гирями более чем

  б) Приведите пример груза, который можно взвесить ровно

Решение

  Пусть Kn(P) – число которыми можно взвесить вес P, используя гири веса  1, 2,..., 2n,  и      (максимальное число которыми можно взвесить какой-либо вес с этих гирь). Очевидно,  K0 = 1,  K1 = 2.

  а) Наша задача – доказать, что  K9 ≤ 89.  Мы докажем, что  Kn+1 ≤ Kn + Kn–1  для каждого  n ≥ 1.  Последовательно применяя это неравенство, получим:

K2 ≤ 3,  K3 ≤ 5,  ..., K9 ≤ 89.

  Рассмотрим гири  1, 2, ..., 2n+1  и какой-либо вес P. Если P чётно, то, очевидно, при его взвешивании гиря веса 1 не используется, то есть взвесить вес P можно тем же числом что и вес P/2 с гирь  1, 2,..., 2n,  то есть  Kn+1(P) = Kn(P/2).  Если P делится на 4, то аналогично

Kn+1(P) = Kn–1(P/4).

  Пусть P нечётно. Тогда при его взвешивании обязательно должна быть использована гиря веса 1. Её можно положить как на одну, так и на другую чашу весов. В одном случае мы сведём задачу к взвешиванию груза веса  P – 1,  в другом – к взвешиванию груза веса  P + 1  гирями веса  2, 4,..., 2n+1.  Таким образом,  Kn+1(P) = Kn+1(P–1) + Kn+1(P+1).  Так как оба числа  P – 1  и  P + 1  чётны, а одно из них делится на 4, то в одном из случаев мы имеем не более взвешивания, в другом – не более Kn. Итак,  Kn+1(P) ≤ Kn + Kn–1.

  б) Пример: 171 г. Рассмотрим последовательность  1, 1, 3, 5, 11, 21, 43, 85, 171.  Легко проверить, что для каждого члена Pn+1 этой последовательности пара чисел  Pn+1 – 1  и  Pn+1 + 1  совпадает с парой чисел  2Pn и 4Pn–1  (не обязательно в том же порядке). Отсюда, как видно из а), следует равенство

Kn+1(Pn+1) = Kn(Pn) + Kn–1(Pn–1),  а так как  K1(P1) = 2,  K2(P2) = 3,  то, последовательно вычисляя, получим  K9(171) = K9(P9) = 89.

ответ

б) Например, 171 г.

Замечания

1. Вес 171 – не единственный, который можно взвесить ровно Вес  341 = 512 – 171  (и только он) обладает тем же свойством.

2. Последовательность из пункта б) можно продолжить: формула общего члена этой последовательности:      Рассмотрение этой последовательности доказывает, что  Kn+1 = Kn + Kn–1  для всех  n ≥ 1,  то есть числа Kn (с точностью до сдвига нумерации) совпадают с числами Фибоначчи.

4,4(43 оценок)
Это интересно:
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ