Высота основания призмы равна 3 см.
Объяснение:
Найти высоту основания правильной треугольной призмы, все ребра которой равны между собой, а ее объем равен 18 см³.
Дано: правильная треугольная прямая призма, все ребра равны, V = 18 см³.
Найти: высоту основания.
Решение.
Рисунок прилагается.
Призма называется прямой, если ее боковые ребра перпендикулярны плоскости основания.Прямая призма называется правильной, если в ее основании лежит правильный многоугольник.Объем призмы равен произведению площади основания на высоту:1) Выразим объем призмы.
Обозначим ребро призмы a см.
Так как по по условию призма прямая и правильная, то
- в основании призмы лежит равносторонний треугольник,
- боковое ребро ее перпендикулярно основанию и равно высоте призмы.
Сторона треугольника основания равна a см.
Высота призмы также равна длине ребра и равна a см.
Тогда объем нашей призмы:
V = S осн · H = S осн · a.
2) Выразим площадь треугольника - основания призмы, через сторону (a см).
У нас треугольник равносторонний, то есть все его стороны равны a см, все углы равны по 60°.
3) Зная объем призмы и выражения площади основания, найдем длину ребра.
Откуда:
4) Найдем площадь основания, зная сторону равностороннего треугольника.
5) Найдем высоту основания призмы, то есть высоту h треугольника.
Таким образом, высота основания призмы равна 3 см.
10 * 2 = 20 см - удвоенная ширина.
84 - 20 = 64 см - удвоенная длина.
64 : 2 = 32 см - длина.
32 * 10 = 320 см² - площадь прямоугольника.
ответ: площадь прямоугольника равна 320 сантиметрам²
Удачи)