1.
║ 12х - 9 < 7x + 11.
║ 11x - 13 > 7x - 4,
║ 12х - 7x < 9 + 11.
║ 11x - 7x > 13 - 4,
║ 5x < 20,
║ 4x > 9,
║ x < 4,
║ x > 2,25;
2.
║ 5х + 4 > -8х - 5,
║ 3х - 9 > 7х - 1,
║ 5х + 8х > -5 - 4,
║ 3х - 7х > 9 - 1,
║ 13х > -9,
║ 4х > 8,
║ х > -9/13,
║ х > 2,
3.
║ 3x - 10 > -x + 2,
║ 8x - 7 < 3x + 8,
║ 3x + x > 10 + 2,
║ 8x - 3x < 7 + 8,
║ 4x > 12,
║ 5x < 15,
║ x > 3,
║ x < 3,
4.
║ (x-3)/3 > (3x-3)/5,
║ 2x + 1 < (x+2)/3,
║ 5(x-3)/15 > 3(3x-3)/15,
║ 3(2x + 1)/3 < (x+2)/3,
║ 5x - 15 > 9x - 9,
║ 6x + 3 < x + 2,
║ 5x - 9x > 15 - 9,
║ 6x - x < 2 - 3,
║ -4x > 6,
║ 5x < -1,
║ x < -1,5,
║ x < -0,2
Данная система — пример системы линейных неравенств с одним неизвестным. Решением системы неравенств с одним неизвестным называется то значение неизвестного, при котором все неравенства системы обращаются в верные числовые неравенства. Решить систему неравенств — это значит найти все решения этой системы или установить, что их нет. Неравенства \( x \geq -2 \) и \( x \leq 3 \) можно записать в виде двойного неравенства: \( -2 \leq x \leq 3 \). ... Решать линейные неравенства с одним неизвестным вы уже научились. Знаете, что такое система неравенств и решение системы. Поэтому процесс решения систем неравенств с одним неизвестным не вызовет у вас затруднений
Пошаговое объяснение:
(а+b)² = (a + x)² + ( b +x)²
a² +2ab + b² = a² +2ax + x² + b² + 2bx + x²
Смотри чертёж в приложении
2ax + x² 2bx + x² = 2ab
2x² + 2(a+b)*x = 2ab
x² + (a+b)*x = ab
x² - (a+b)*x - ab = 0
D = b² - 4ac = (a +b)² + 4ab = a² + 2ab +b² +4ab = a² +6ab + b²
x₁= (a + b +√ (a² +6ab + b²) ) /2 = R вписанной окружности.
х₂ = (a + b -√ (a² +6ab + b²) ) /2 Это число отрицательное, значит, к условию задачи не подходит.