Дробь 7/400 действительно можно представить в виде конечной десятичной: получится 0,0175. И это можно сделать потому, что в разложении знаменателя (400) на множители есть только двойки и пятерки:
400 = 2⁴ * 5².
Теперь посмотрим на дробь 7/420. Попробуем ее сократить: 1/60. И если разделить, то получим бесконечную (в условии, скорее всего, требовалось, чтобы дробь была конечной) периодическую десятичную дробь:
1/60 = 0,01(6).
Разложим знаменатель данной дроби на множители:
420 = 2² * 3 * 5 * 7 .
Как видно, в разложении присутствуют не только двойки и пятерки, но и другие числа (3 и 7). Поэтому данную дробь нельзя представить в виде конечной десятичной.
Так как система счисления десятичная, чтобы разделить и получить десятичную конечную дробь, нужно сделать так, чтобы при делении на 10 получилась дробь такого же вида. 10 = 2 * 5, то есть число, на которое делят, должно в разложении иметь тольео двойки и пятерки.
Дробь 7/400 действительно можно представить в виде конечной десятичной: получится 0,0175. И это можно сделать потому, что в разложении знаменателя (400) на множители есть только двойки и пятерки:
400 = 2⁴ * 5².
Теперь посмотрим на дробь 7/420. Попробуем ее сократить: 1/60. И если разделить, то получим бесконечную (в условии, скорее всего, требовалось, чтобы дробь была конечной) периодическую десятичную дробь:
1/60 = 0,01(6).
Разложим знаменатель данной дроби на множители:
420 = 2² * 3 * 5 * 7 .
Как видно, в разложении присутствуют не только двойки и пятерки, но и другие числа (3 и 7). Поэтому данную дробь нельзя представить в виде конечной десятичной.
Так как система счисления десятичная, чтобы разделить и получить десятичную конечную дробь, нужно сделать так, чтобы при делении на 10 получилась дробь такого же вида. 10 = 2 * 5, то есть число, на которое делят, должно в разложении иметь тольео двойки и пятерки.
2 число -х,
3 число - 0,4х.
Сумма 3-х чисел 81, уравнение:
32+х+0,4х=81
1,4х=81-32
1,4х=49
х=35 (второе число)
0,4*35=14 (третье число).
ответ: Второе число 35, третье число 14.