ответ:
во вложении - график функции.
синим цветом показана одна из линий при m=2.25. вторая линия совпадает с осью абсцисс (m=0).
исходная функция y={x}^{2}+3\,x-4\, \left| x+2 \right| +2y=x
2
+3x−4∣x+2∣+2 содержит функцию абсолютной величины, поэтому её надо рассматривать отдельно на участках, где выражение под знаком абсолютной величины отрицательно и положительно, т.е. на интервалах (-∞; -2] и [-2; +∞]
на первом интервале |x+2|≤0 и функция примет следующий вид:
y=x²+3x+4(x+2)+2 ⇒ y=x²+7x+10. график функции - квадратная парабола с ветвями, направленными вверх (коэффициент при х² положительный). чтобы определить точки пересечения с осью абсцисс составим уравнение
x²+7x+10=0 ⇒ x1=-5; x2=-2 - это и будут точки пересечения графика функции с осью абсцисс.
на втором интервале |x+2|≥0 и функция примет следующий вид:
y=x²+3x-4(x+2)+2 ⇒ y=x²-x-6. график функции - квадратная парабола с ветвями, направленными вверх (коэффициент при х² положительный). чтобы определить точки пересечения с осью абсцисс составим уравнение
x²-x-6=0 ⇒ x3=-2; x4=3 - это и будут точки пересечения графика функции с осью абсцисс.
корни х2 и х3 совпали, это значит, что всего имеется три точки пересечения графиков с осью обсцисс в точках х1=-5б х2=-2б х3=3. это и будет первая из искомых прямых, т.е. m1=0.
построив и рассмотрев график функции, можно определить, что вторая прямая, параллельная оси абсцисс и имеющая с графиком функции ровно три общие точки - это прямая, проходящая через минимум первой из рассмотренных функций (показана на графике синим цветом). для нахождения точки экстремума функции y=x²+7x+10 достаточно её производную приравнять нулю. y'=2x+7; 2x+7=0 ⇒ x=-3.5
подставляя найденное значение x в выражение функции получим y=(-3.5)²-7*3.5+10=
-2.25, т.е. m2=-2.25.
Пошаговое объяснение:
1) а1 = 14 d= -7
a15 = a1 + 14d = 14 + 14 *(-7) = 14 - 98 = - 84
2) a1 = -9 a2= -6 a3 = - 3
d = a2 - a1= -6 -(-9) = - 6 + 9 = 3
S6= (a1+d(n-1)/2))*n = (-9 + 3* 5)/2)) * 6 = 3 * 6 = 18
3)an = 5n - 8
a1 = 5* 1 - 8 = -3
a30 = 5n -8 = 5 * 30 - 8 = 150 - 8 = 142
Подставляем в формулу суммы и вычисляем:
S30 = 30 * (a1 + a30)/2 = 15 * (a1 + a30) = 15 * (-3 + 142) = 15 * 139 = 2085
4) Из формулы n–го члена, найдем разность арифметической прогрессии.
a6 = a1 + d(6-1)
17 = 7 + 5d
10 = 5d
d = 2
56 = 7 + 2(n- 1)
56 = 7 + 2n -2
-2n = 5 - 56
- 2n = -51
n= - 51 : (-2)
n= 25,5 десятичная дробь, поэтому 56 не может быть членом данной арифметической прогрессии.
ширина =3м 8 дм=38 дм
S комнаты = Длина*Ширину=54*48=2052 дм²
S плитки=3*1=3 дм²
Sкомнаты / S плитки=2052:3=684 штук
ответ: 684 штук