Допустим одного вида почтовых марок купили Х штук и их общяя стоимость составила 0,18*Х тогда другого вида почтовых марок купили 12-Х, а их стоимость составила 0,25*(12-х) знаю общию стоимость марок, составляем уравнение: 0,25*(12-х)+0,18*х=2,51 0.07х=0,49 Х=7 штук одного вида марок 12-7=5 штук другого вида марок.
В начале решения находим точки пересечения линий, они дадут пределы интегрирования. Решим уравнение х² + 1 = х + 3. х² - х -2 = 0, х = 2 или х = -1. Это абсциссы точек пересечения. Считаем координаты точек.(-1;2) и (2;5). Для нахождения площади фигуры,ограниченной линиями находим площадь трапеции, ее основания 2 и 5, а высота 3. S = (2+5)/2*3 =10,5. Найдем площадь фигуры под параболой . Интеграл от -1 до 2 от (х²+1)dx = (1/3х³ + х) подстановка от-1 до 2 = (1/3 *2³ +2) - (1/3 *(-1)³-1) = 6. Теперь от всей трапеции отнимем часть под параболой 10,5 -6 =4,5.
Найдем размещения из 5 по 5 (сколько всего чисел из пяти не повторяющихся цифр, в том числе с нулем в начале): A = 5!/0! = 120
Найдем размещения из 4 по 4 (сколько чисел, начинающихся или заканчивающихся на конкретную цифру): A1= 4!/0! = 24
Четные числа оканчиваются на 3 цифры (0, 2, 4). 24*3=72
Отбросим группу, начинающуюся с 0 (четырехзначные числа). В "нулевой" группе поровну четных (оканчивающихся на 2, 4) и нечетных чисел (оканчивающихся на 1, 3).
5.3) Четные = 72-(24/2)=60 5.4) Нечетные = 120-24-60=36 5.5) Числа, кратные 5, оканчиваются на 0. Таких 24 (все пятизначные т.к. не начинаются с 0). 5.6) Оканчиваются на 3 цифры (1, 3, 5). 24*3=72