Лемма: существует такое y-значное число вида XX...X (т.е. состоит из целиком из цифр X) такое, что оно делится на число 1987
Доказательство: число указанного вида можно представить в виде
; Сперва очевидно, что
делится на 9. Согласно малой теореме Ферма
, так как 1987 - число простое. Так как 9 и 1987 взаимно просты, то число XX...X делится на 1987 для n+1=1986, т.е. для n=1985.
Итак, взяв например n=1985 получим число 1...19...98...86...6, которое раскладывается как , где каждое из чисел вида X...X делится на 1987
4/5 + 1/6=24/30+5/30=29\30
1/2 + 2/15 =15/30+4/30=19\30
4/5 +6/7=28/35+30/35=58/30=1 целая 28/30= 1 целая 14/15