Пусть x километров в час – скорость первого мопеда, а y километров в час – скорость второго мопеда. Если первый выехал на 2 ч раньше второго, то согласно условию задачи первый мопед будет ехать до встречи 4,5 ч, тогда как второй – 2,5 ч. За 4,5 ч первый проедет путь 4,5x километров, а за 2,5 ч второй проедет путь 2,5y километров. Отсюда 4,5x + 2,5y = 300 – первое уравнение.
Если второй выедет на 2 ч раньше первого, то согласно условию он будет ехать 5 ч, тогда как первый – 3 ч. Придём ко второму уравнению 3x + 5y = 300.
В итоге получаем систему уравнений:
{4,5x+2,5y=300
{3x+5y=300
Откуда получаем: x = 50, y = 30
Задача по теории вероятностей. Из 13 лотерейных билетов 5 – выигрышных. Первый студент вынимает наудачу 3 билета (без возвращения), после чего второй студент берет 2 билета. Один из билетов второго студента оказался выигрышным. Какова вероятность того, что у первого студента один из трех билетов выигрышный?
Решение: По условию задачи второй студент взял два билета и один оказался выигрышным.Осталось 11 билетов из которых 4 выигрышных.
Применяем формулу классической вероятности и находим вероятность того, что у первого студента один билет из трех будет выигрышным:
где -число взять один билет выигрышный и два невыигрышных,
- число всех взять 3 из 11 билетов.
Из урны, содержащей 5 красных, 3 черных и 2 белых шара, наудачу извлекают 3 шара. Найти вероятности событий:
А – “все извлеченные шары красные”;
В – “ все извлеченные шары – одного цвета”;
С – “среди извлеченных ровно 2 черных”.
Элементарным исходом данного СЭ является тройка (неупорядоченная !) шаров. Поэтому, общее число исходов есть число сочетаний: n == 120 (10 = 5 + 3 + 2).
Событие А состоит только из тех троек, которые извлекались из пяти красных шаров, т.е. n(A)== 10.
Событию В кроме 10 красных троек благоприятствуют еще и черные тройки, число которых равно= 1. Поэтому: n(B)=10+1=11.
Событию С благоприятствуют те тройки шаров, которые содержат 2 черных и один не черный. Каждый выбора двух черных шаров может комбинироваться с выбором одного не черного (из семи). Поэтому: n(C) = = 3 * 7 = 21.
Итак: Р(А) = 10/120; Р(В) = 11/120; Р(С) = 21/120
Вот тебе выбирай вроде так
5412-1874=3538