М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
rudypal12p08ufl
rudypal12p08ufl
08.06.2020 07:25 •  Математика

Можно ответ и решение -3,8*(4-4,9)+13,4*(3-2,8)=

👇
Ответ:
logean
logean
08.06.2020

ответ:6.1

Пошаговое объяснение:1)3.42

2)2.68

3)6.1

4,7(95 оценок)
Открыть все ответы
Ответ:
сана24
сана24
08.06.2020

Доказательство.

Пусть α и β — данные плоскости, a1 и a2 — пересекающиеся прямые в плоскости α , а b1 и b2 — соответственно параллельные им прямые в плоскости β .

Допустим, что плоскости α и β не параллельны, то есть, они пересекаются по некоторой прямой c .

Прямая a1 параллельна прямой b1 , значит, она параллельна и самой плоскости β .

Прямая a2 параллельна прямой b2 , значит, она параллельна и самой плоскости β (признак параллельности прямой и плоскости).

Прямая c принадлежит плоскости α , значит, хотя бы одна из прямых — a1 или a2 — пересекает прямую c , то есть имеет с ней общую точку. Но прямая c также принадлежит и плоскости β , значит, пересекая прямую c , прямая a1 или a2 пересекает плоскость β , чего быть не может, так как прямые a1 и a2 параллельны плоскости β .

Из этого следует, что плоскости α и β не пересекаются, то есть, они параллельны.

Свойства параллельных плоскостей

Теорема 1. Если две параллельные плоскости пересекаются третьей, то прямые пересечения параллельны.

4,5(61 оценок)
Ответ:
ащя
ащя
08.06.2020

Центр правильного многоугольника - точка пересечения его диагоналей. Правильный 6-угольник делится его диагоналями на 6 равных правильных треугольников с равными площадями.

 

Пусть 6-угольник А1А2А3А4А5А6 с цетром О.

Он состоит из 6 треугольников А1А2О, А2А3О, А3А4О, А4А5О, А5А6О, А6А1О.

Если прямая проходит через одну из диагоналей, то в каждой части остается по 3 равных треугольника, очевидно, что их площадь равна.

Если прямая не совпадает с диагональю, а проходит через треугольники А1А2О и А4А5О.

В одной части фигуры остались 2 целых треугольника А2А3О и А3А4О, в другой А5А6О и А5А6О. Эти части равны.

Треугольники А1А2О и А4А5О разрезаны на 2 части. Точка пересечения прямой с со стороной треугольника А1А2 - В, со стороной треугольника А4А5 - С.

Докажем равенство получившихся треугольников А1ВО и А4СО. Они равны по стороне - А1О=А4О и 2 углам - углы ОА1В и ОА4С равны т. к. это углы равносторонних треугольников. Углы А1ОВ и А4ОС равны как вертикальные. Аналогично для треугольников ВА2О и СА5О.

Т. Е. обе части 6-угольника целиком равны.

4,6(88 оценок)
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ