М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
August333
August333
27.04.2021 13:51 •  Математика

Линейная функция задана формулой y=kx+b найдите k если y(3) =9 и y(-2) = -11

👇
Ответ:
Takashu69
Takashu69
27.04.2021
Символы сиволы символы
Линейная функция задана формулой y=kx+b найдите k если y(3) =9 и y(-2) = -11
4,7(59 оценок)
Открыть все ответы
Ответ:
iermin98
iermin98
27.04.2021

dogmiroslava

14.02.2016

Алгебра

5 - 9 классы

+12 б.

ответ дан

Найдите область определения функции

а) y=√5x-4x^2 (всё выражение под квадрат. корнем)

б) y=√x^2+2x-80 (под квадрат. корнем) /3x-36

ОЧЕНЬ

2

ПОСМОТРЕТЬ ОТВЕТЫ

ответ, проверенный экспертом

5,0/5

0

axatar

главный мозг

2.4 тыс. ответов

548.5 тыс. пользователей, получивших

а) x∈[0; 1,25]

б) x∈(-∞; -10]∪[8; 12)∪(12; +∞)

Объяснение:

а)

Область определения функции:

подкоренное выражение должен быть неотрицательным

5·x-4·x²≥0

x·(5-4·x)≥0

Нули левой части неравенства

х=0 и 5-4·x=0 или х=0 и x=5/4=1,25

Применим метод интервалов

x·(5-4·x): - + -

-∞ -1 [0] 1 [1,25] 100 > +∞

То есть

при х= -1 : -1·(5-4·(-1)) = -1·(5+4) = -1·9 = -9<0

при х= 1 : 1·(5-4·1) = 1·(5-4) = 1·1 =1>0

при х= 100 : 100·(5-4·100)) = 100·(5-400) = 100·(-395) =-39500<0

ответ: x∈[0; 1,25]

б)

Область определения функции:

1) подкоренное выражение должен быть неотрицательным

x² + 2·x - 80≥0

Левую часть разложим на множители, для этого решаем как квадратное уравнение

D= 2²-4·1·(-80)=4+320=324=18²

x₁=(-2-18)/2= -20/2 = -10

x₂=(-2+18)/2= 16/2 = 8

(x - (-10))·(x-8)≥0

Нули левой части неравенства - это корни квадратного уравнения.

Применим метод интервалов

(x+10)·(x-8): + - +

-∞ -100 [-10] 0 [8] 100 > +∞

То есть

при х= -100: (-100+10)·(-100-8)) = -90·(-108) = 90·108 >0

при х= 0 : (0+10)·(-8)) = 10·(-8) = -80 <0

при х= 100 : (100+10)·(100-8)) = 110·92 >0

ответ: x∈(-∞; -10]∪[8; +∞)

2) знаменатель не должен быть нулем

3·x-36≠0 или 3·x≠36 или x≠12.

Тогда ответ: x∈(-∞; -10]∪[8; 12)∪(12; +∞)

4,6(37 оценок)
Ответ:
avon300817
avon300817
27.04.2021

1)

в) (\frac{2}{3})^{4} * (\frac{3}{2})^{4} = \frac{16}{81} * \frac{81}{16} = 1

2)

а) \frac{55}{48} : (\frac{11}{16} + \frac{3}{32}) - \frac{14}{15} * \frac{5}{7} = 0,8\\\\1) \frac{11}{16} + \frac{3}{32} = \frac{22}{32} + \frac{3}{32} = \frac{25}{32}\\\\2) \frac{55}{48} : \frac{25}{32} = \frac{55*32}{48*25} = \frac{22}{15} = 1\frac{7}{15}\\\\3) \frac{14}{15} * \frac{5}{7} = \frac{14*5}{15*7} = \frac{2}{3}\\\\4) 1\frac{7}{15} - \frac{2}{3} = 1\frac{7}{15} - \frac{10}{15} = \frac{22}{15} - \frac{10}{15} = \frac{12}{15} = \frac{4}{5} = 0,8

ответ: 0,8

б) (\frac{1}{12} + \frac{1}{13})^{2} : (\frac{1}{12}-\frac{1}{13})^{2} * (\frac{1}{10})^{3} = \frac{5}{8}\\\\1) \frac{1}{12} + \frac{1}{13} = \frac{13}{156} + \frac{12}{156} = \frac{25}{156}\\\\2) \frac{1}{12}-\frac{1}{13} = \frac{13}{156}-\frac{12}{156} = \frac{1}{156}\\\\3) (\frac{25}{156})^{2} : (\frac{1}{156})^{2} = (\frac{25}{156}:\frac{1}{156})^{2} = (\frac{25*156}{156})^{2} = 25^{2} = 625\\\\4) 625 * (\frac{1}{10})^{3} = 625 * \frac{1}{1000} = 625 * 0,001 = 0,625 = \frac{5}{8}

ответ: \frac{5}{8}

3)

1) 120 : 4 = 30 (задач) - составляет \frac{1}{4}.

2) 120 - 30 = 90 (задач) - остаток.

3) 90 * \frac{2}{3} = \frac{90*2}{3} = 30*2 = 60 (задач)

4) 120 - 30 - 60 = 120 - 90 = 30 (задач) - осталось решить.

ответ: 30 задач.

4) 1 - общее количество проданных тортов.

1) 1 - \frac{5}{9} = \frac{4}{9} - продано после обеда.

2) \frac{4}{9} : 2 = \frac{2}{9} - составляют от общего 12 тортов.

3) 12 : \frac{2}{9} = \frac{12*9}{2} = 6*9 = 54 торта продано за день.

ответ: 54 торта.

5) Нужно привести \frac{1}{3} и \frac{2}{3} к общему знаменателю, кратному числу 13. Это число 39. \frac{1}{3} = \frac{13}{39} и \frac{2}{3} = \frac{26}{39}. Между ними находятся дроби: \frac{14}{39};\frac{15}{39};\frac{16}{39};\frac{17}{39};\frac{18}{39};\frac{19}{39};\frac{20}{39};\frac{21}{39};\frac{22}{39};\frac{23}{39};\frac{24}{39};\frac{25}{39}. 39 : 13 = 3, поэтому нужно искать дроби с числителем, кратным 3. Это дроби: \frac{15}{39} = \frac{5}{13}; \frac{18}{39} = \frac{6}{13}; \frac{21}{39} = \frac{7}{13}; \frac{24}{39} = \frac{8}{13}.

ответ: \frac{5}{13};\frac{6}{13};\frac{7}{13};\frac{8}{13}.

4,8(72 оценок)
Это интересно:
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ