1) 46/3
2) 53/5
3) 77/3
4) 29/3
5) 61/5
6) 100/7
Пошаговое объяснение:
Чтобы перевести смешанную дробь в неправильную, нужно целое число уножить на знаменатель дроби и прибавить числитель, а знаменатель оставить неизменным. Например, в первом случае: 15 умножаем на 3 и прибавляем 1, получается 46, а знаменатель как была 3, так и остаётся. Получилось 46/3.
ответ: 1) dz=e^(x/y)*dx/y-x*e^(x/y)*dy/y²; 2) функция имеет максимум в точке M(2/3; 1/3).
Пошаговое объяснение:
1) z=e^(x/y)
Находим частные производные:
dz/dx=1/y*e^(x/y), dz/dy=-x/y²*e^(x/y).
Полный дифференциал dz=dz/dx*dx+dz/dy*dy=e^(x/y)*dx/y-x*e^(x/y)*dy/y²
2) Находим первые частные производные:
dz/dx=2*y+2*x-2; dz/dy=2*x+8*y-4.
Приравнивая их к нулю, получаем систему уравнений:
x+y-1=0
x+4*y-2=0
Решая её, находим x=2/3, y=1/3 - координаты единственной критической точки М(2/3; 1/3).
Находим вторые частные производные:
d²z/dx²=2; d²z/dxdy=2; d²z/dy²=8. Так как они суть постоянные числа, то и в критической точке они будут иметь те же значения:
A=d²z/dx²(M)=2; B=d²z/dxdy(M)=2; C=d²z/dy²(M)=8.
Так как выражение A*C-B²=2*8-4=12>0, то есть положительно, то в точке М функция действительно имеет экстремум. А так как при этом A=2>0, то этот экстремум является максимумом.
15 1/3= 15*3+1/3= 46/3
10 3/5= 10*5+3/5= 53/5
11 3/7= 11*7+3/7= 80/7
9 2/3= 9*3+2/3= 29/3
12 1/5= 12*5+1/5= 61/5
14 2/7= 14*7+2/7= 100/7