Проверим каждое из утверждений.
1) «Около любого ромба можно описать окружность.» — неверно, чтобы около четырёхугольника можно было описать окружность, необходимо, чтобы сумма противоположных углов четырёхугольника составляла 180°. Это верно не для любого ромба.
2) «В любой треугольник можно вписать не более одной окружности.» — верно, в любой треугольник можно вписать окружность, притом только одну.
3) «Центром окружности, описанной около треугольника, является точка пересечения биссектрис.» — неверно, центром описанной около треугольника окружности является точка пересечения серединных перпендикуляров треугольника.
4) «Центром окружности, вписанной в треугольник, является точка пересечения серединных перпендикуляров к его сторонам.» — неверно, центром вписанной в треугольник окружности является точка пересечения биссектрис треугольника.
ответ:2
5(х + 22) = 6(х + 22)
5х + 110 = 6х + 132
5х - 6х = 132 - 110
- х = 22
х = - 22
- - - - - - - - - - - -
Проверка:
5(-22 + 22) = 6(-22 + 22)
5 · 0 = 6 · 0
0 = 0