ответ: х = –π/2 + 2 * π * k, где k – целое число.
Пошаговое объяснение:
Решим данное тригонометрическое уравнение √(2) * cos(π/4 + x) – cosx = 1 с пояснением.
К левой части уравнения применим формулу cos(α + β) = cosα * cosβ – sinα * sinβ (косинус суммы). Тогда, получим: √(2) * (cos(π/4) * cosх – sin(π/4) * sinх) – cosx = 1.
Согласно таблице основных значений синусов, косинусов, тангенсов и котангенсов, имеем: sin(π/4) = cos(π/4) = √(2) / 2. Следовательно, √(2) * ((√(2) / 2) * cosх – (√(2) / 2) * sinх) – cosx = 1. Раскроем скобки: cosх – sinх – cosx = 1 или sinх = –1.
Полученное тригонометрическое уравнение sinх = –1 имеет следующее решение: х = –π/2 + 2 * π * k, где k – целое число.
сходная дробь 2.(45)
Считаем количество цифр в периоде десятичной дроби. P = 2
Считаем количество цифр после запятой, но до периода. DP = 0
Число, состоящее из цифр после запятой, включая период (за исключением ведущих нулей). ALL = 45
Число, состоящее из цифр после запятой, но до периода (за исключением ведущих нулей). ALL_DP = 0
Числитель дроби CHISL = ALL - ALL_DP = 45 - 0 = 45
Знаменатель дроби ZNAM = 99, состоит из девяток в количестве P = 2 и нулей в количестве DP = 0
Числитель и знаменатель дроби сокращаем на 9
2 5/11