Нод - наиб. общ. делитель, разлагаем числа при специального метода и находишь общие делители, к пример 6 и 8 6|-2,3,6 ; 12|-2,3,4,6,12, 2 и 3 общие, умножаем их для получения нод: 6 Нок находится так: 2 и 3 общие, 2 увеличиваем в 3 раза а 3 в 2 раза, получается 6 и 6, вот и твой НОК. Незачто :3
Пусть во второй день велосипедист проехал s км, тогда в первый день - s+30 км. Пусть в первый день велосипедист ехал t часов, тогда во второй день - 5-t часов. Тогда s+30=20*t и s=15*(5-t). Отсюда 20*t=15*(5-t)+30, 20*t=75-15*t+30=105-15*t,35*t=105,t=105/35=3 ч. Тогда s=15*(5-t)=15*2=30 км - проехал велосипедист во второй день и s+30=60 - в первый день. За 2 дня велосипедист проехал расстояние 30+60=90 км. ответ: 90 км.
Можно решить и системой.
s+30=20*t s=15*(5-t)
s+30=20*t s=75-15*t
s=20*t-30 s=75-15*t Вычитая из первого уравнения второе, получаем уравнение 35*t-105=0, 35*t=105, t=105/35=3 ч. Подставляя это значение в первое уравнение, находим s=20*3-30=30 км - пройдено во второй день. Тогда в первый день пройдено s+30=60 км, а всего пройдено s+s+30=2*s+30=2*30+30=90 км.
По условию (16х -3) должно быть в 5 раз больше (3х+2), т.е. 16х - 3 = 5 * (3х + 2); 16х - 3 = 15х + 10; 16х - 15х = 10 + 3; х = 13. ответ: при х=13 выражение (16х-3) в 5 раз больше выражения (3х+2). Проверка: 16х-3=16*13-3=208-3=205; 3х+2=3*13+2=39+2=41; 205:41=5 п е р е в о д; За умовою (16х -3) має бути в 5 разів більше (3х+2), тобто 16х - 3 = 5 * (3х + 2); 16х - 3 = 15х + 10; 16х - 15х = 10 + 3; х = 13. Відповідь: при х=13 вираз (16х-3) в 5 разів більше виразу (3х+2). Перевірка: 16х-3=16*13 -3=208-3=205; 3х+2=3*13+2=39+2=41; 205:41=5
6|-2,3,6 ; 12|-2,3,4,6,12, 2 и 3 общие, умножаем их для получения нод: 6
Нок находится так:
2 и 3 общие, 2 увеличиваем в 3 раза а 3 в 2 раза, получается 6 и 6, вот и твой НОК.
Незачто :3