М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
qq302894
qq302894
14.12.2021 09:13 •  Математика

Ученик начертил прямоугольник и квадрат с равными периметрами.ширины прямоугольника 8 см, и она на 1 ли меньше длины.найдите площади прямоугольника и квадрата

👇
Ответ:
kharchenko219633
kharchenko219633
14.12.2021
1) 8+10= 18(см)- ширина
2)8×18=144(см2)-площадь прямоугольника
3)(8+18)×2=52(см )-периметр
4)52:4=13(см)-сторона квадрата
5)13×13=109(см)-площадь квадрата
ответ:S□ =109см2 S[]=144см2
4,4(18 оценок)
Открыть все ответы
Ответ:
marijamihaylow
marijamihaylow
14.12.2021

Пошаговое объяснение:

Пусть R — радиус шара.

Сопоставим каждой большой грани часть граничной сферы шара, расположенную в конусе, вершиной которого служит центр шара, а основанием — проекция шара на эту грань.

Указанная часть сферы является «сферической шапочкой» (то есть частью сферы, лежащей по одну сторону от секущей сферу плоскости) высоты .

По известной формуле площадь такой «шапочки» равна .

Так как указанные «шапочки» не перекрываются, сумма их площадей не превосходит площади сферы.

Обозначив количество больших граней через n, получим , то есть .

Решение заканчивается проверкой того, что .

Примечание. Легко видеть, что у куба шесть больших граней.

Поэтому приведенная в задаче оценка числа больших граней является точной.

4,6(39 оценок)
Ответ:
leraaleksan
leraaleksan
14.12.2021

Пошаговое объяснение:

Сопоставим каждой большой грани часть граничной сферы шара, расположенную в конусе, вершиной которого служит центр шара, а основанием — проекция шара на эту грань.

Указанная часть сферы является «сферической шапочкой» (то есть частью сферы, лежащей по одну сторону от секущей сферу плоскости) высоты .

По известной формуле площадь такой «шапочки» равна .

Так как указанные «шапочки» не перекрываются, сумма их площадей не превосходит площади сферы.

Обозначив количество больших граней через n, получим , то есть .

Решение заканчивается проверкой того, что .

Примечание. Легко видеть, что у куба шесть больших граней.

Поэтому приведенная в задаче оценка числа больших граней является точной.

4,7(36 оценок)
Это интересно:
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ