Пошаговое объяснение:
Мы имеем прямоугольный треугольник АВС, с прямым углом С, где АС, ВС - катеты, АВ - гипотенуза. Также мы имеем описанную окружность, радиус которой мы можем найти, как половину гипотенузы, для начала найдем гипотенузу по теореме Пифагора:
AB^2 = AC^2 + BC^2;
AB^2 = 6^2 + 8^2;
AB^2 = 36 + 64;
AB^2 = 100;
AB = 10 см.
Так как мы нашли длину гипотенузы, мы можем сразу найти радиус описанной окружности, как:
R = AB / 2;
R = 10 / 2;
R = 5 см.
ответ: радиус описанной окружности равен 5 см.
11088 | 2 5292 | 2
5544 | 2 2646 | 2
2772 | 2 1323 | 3
1386 | 2 441 | 3
693 | 3 147 | 3
231 | 3 49 | 7
77 | 7 7 | 7
11 | 11 1
1 5292 = 2² · 3³ · 7²
11088 = 2⁴ · 3² · 7 · 11
б) НОД (11088; 5292) = 2² · 3² · 7 = 252 - наибольший общий делитель
11088 : 252 = 44 5292 : 252 = 21
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
360 | 2 252 | 2
180 | 2 126 | 2
90 | 2 63 | 3
45 | 3 21 | 3
15 | 3 7 | 7
5 | 5 1
1 252 = 2² · 3² · 7
360 = 2³ · 3² · 5
в) НОК (360; 252) = 2³ · 3² · 5 · 7 = 2520 - наименьшее общее кратное
2520 : 360 = 7 2520 : 252 = 10