Автобус - х км/ч
Грузовая машина - х+19 км/ч
S - 620 км
t встречи - 4 ч
Найти:
Скорость автобуса и скорость грузовой машины - ? км
Пусть х км/ч - скорость автобуса, тогда х + 19 км/ч - скорость грузовой машины. По условию задачи они выехали одновременно и встретились через 4 часа, расстояние между городами - 620 км. Составим и решим уравнение:
4х + 4(х+19) = 620
4х + 4х + 76 = 620
8х = 620 - 76
8х = 544
х = 544 : 8
х = 68
1) 68 (км/ч) - скорость автобуса
2) 68 + 19 = 87 (км/ч) - скорость грузовой машины
ответ: скорость автобуса - 68 км/ч, скорость грузовой машины - 87 км/ч
Общее уравнение прямой
Ax + By + C = 0. (2.1)
Вектор n(А,В) ортогонален прямой, числа A и B одновременно не равны нулю.
Уравнение прямой с угловым коэффициентом
y - yo = k (x - xo), (2.2)
где k - угловой коэффициент прямой, то есть k = tg a, где a - величина угла, образованного прямой с осью Оx, M (xo, yo ) - некоторая точка, принадлежащая прямой.
Уравнение (2.2) принимает вид y = kx + b, если M (0, b) есть точка пересечения прямой с осью Оy.
Уравнение прямой в отрезках
x/a + y/b = 1, (2.3)
где a и b - величины отрезков, отсекаемых прямой на осях координат.
Уравнение прямой, проходящей через две данные точки - A(x1, y1) и B(x2, y2 ):
уравнения. (2.4)
Уравнение прямой, проходящей через данную точку A(x1, y1) параллельно данному вектору a(m, n)
уравнение. (2.5)
Нормальное уравнение прямой
rnо - р = 0, (2.6)
где r - радиус-вектор произвольной точки M(x, y) этой прямой, nо - единичный вектор, ортогональный этой прямой и направленный от начала координат к прямой; р - расстояние от начала координат до прямой
70:2=35
Катя потратила -35,Серёжа-40