Пусть первая цифра а, третья с. Тогда вторая (а + с) / 2. Само число 100а + (а + с) / 2 * 10 + с = 105а + 6с. 102а + 6с делится на 6, поэтому вычтем это. Остается 3а. Так как остаток не нулевой, а - нечетно, и остаток 3а равен 3. Теперь из числа вычтем 99а, так как это делится на 11. Получим 6а + 6с = 6(а + с) = 12 (а + с) / 2. Так как (а + с) / 2 целое число, вычтем 11 (а + с) / 2. Получаем (а + с) / 2 - 3 делится на 11. Но (а + с) / 2 меньше 10, поэтому принимает единственное подходящее значение 6 ((а + с) / 2 - 3 = 0). Тогда получаем три случая: а = 1, с = 5, число 135 а = 3, с = 3, число 333 а = 5, с = 1, число 531 Это все числа, удовлетворяющие условиям
Я не знаю Ваш уровень математической подготовки. Ну вот один из Находим все делители свободного члена Это 1, -1, 3,-3, 9, -9 и проверкой (подстановкой )находим делитель, при котором многочлен обращается в 0. У нас это 1, тогда один из множителей будет х-1 Есть теорема которая доказывает это свойство многочлена. Теперь мы исходный многочлен делим на (х-1). Вы это умеете делать?. Просто я Вам не смогу описать это здесь. Надо показать. В результате деления многочлена на многочлен получим х∧3+5∧2+3х-9=(х-1)(х∧2+6х+9)=(х-1)(х+3)∧2
Это самый простой Есть ещё выделения множителей, но он очень долгий. Как Вас учили я не знаю. В математике Мордкович профильный уровень рассматривается этот другой