1) ▪Пусть - а сторона квадрата. ▪Найдем 30% от а - (0,3а) ▪Увеличим сторону квадрата на 30%: (а + 0,3а=1,3а) ▪Площадь квадрата: S(кв.) = а^2 ▪Площадь новового квадрата S= (1,3а)^2 = 1,69а^2 ▪S - S(кв.) = 1,69а^2 - а^2 = 0,69а^2 ▪что составляет 0,69 = 69% ▪ответ: Если сторону квадрата увеличить на 30%, тогда площадь увеличиться на 69%.
2) ▪Пусть - а сторона квадрата. ▪Найдем 10% от а - (0,1а) ▪Уменьшим сторону квадрата на 10%: (а - 0,1а=0,9а) ▪Площадь квадрата: S(кв.) = а^2 ▪Площадь уменьшенного квадрата S= (0,9а)^2 = 0,81а^2 ▪ S(кв.) - S = а^2 - 0,81а^2 = 0,19а^2 ▪что составляет: 0,19 = 19% ▪ответ: Если сторону квадрата уменьшить на 10%, тогда площадь уменьшиться на 19%.
1566. ▪Пусть а - длинна прямоугольника, b - ширина прямоугольника. ▪Найдем: 15% от а = 0,15а 20% от b = 0,2b ▪Если длинну уменьшить на 15%: а - 15% = а - 0,15а = 0,85а ▪Если ширину увеличить на 20%: b + 20% = b + 0,2b = 1,2b ▪Площадь прямоугольника: S(1) = аb ▪Площадь новового прямоугольника: S(2) = аb = 0,85а × 1,2b = 1,02ab ▪S(2) - S(1) = 1,02ab - ab = 0,02аb ▪что составляет 0,02 = 2% ответ: Площадь прямоугольника изменится на 2%
наименьшее число, в котором нет 0 из ряда данного: 1111
p(1111) = 1
p(1112) = 2
...
p(1119) = 9
S1 = p(1111) + ... p(1119) = 1+2 + ... + 9 = 45
p(1121) = 2*p(1111)
p(1122) = 2*p(1112)
...
p(1129) = 2*p(1119)
если 3 в разряде десятков, то умножение на 3, если 9, то на 9
S2 = p(1121) + ... + p(1129) = 2S1
S3 = p(1131) + ... + p(1139) = 3S1
...
S9 = p(1191) + ... + p(1199) = 9S1
S21 = S1 + ... + S9 = 45*45 = 2025
S22 = p(1211) + ... + p(1299) = 2S21
...
S29 = p(1911) + ... + p(1999) = 9S21
S31 = S21 + ... + S29 = 45*S21 = 45*2025 = 91125
от 2000 до 2016 во всех числах есть 0, поэтому сумма p от этих чисел равна 0
итого:
p(1000)+p(1001)+…+p(2016) = S31 = 91125