и
то ничего не изменится, всё будет работать как прежде.

чтобы![( [ a + 1 ] + x + y ) | ( 2a+x ) ,](/tpl/images/0497/6250/3dbb9.png)
и
;
;
правая часть отрицательная, а левая положительна, что не возможно.
;
его значение
и будем искать такие комбинации
чтобы:
– теперь всегда будет выполняться с 
и
;
;
правая часть отрицательная, а левая положительна, что не возможно.
но это не подходит по условию.
;
его значение
и будем искать такие комбинации
чтобы:
– теперь всегда будет выполняться с 
– теперь всегда будет выполняться с 

;
;
;
;
;
т.е. при 

;Короче вот:
Пошаговое объяснение:
Лемма 1
Если многочлен от двух переменных P ( x , y ) {\displaystyle P\,(x,\,y)} P\,(x,\,y) в бесконечном числе точек на прямой l : a x + b y + c = 0 {\displaystyle l:\,ax+by+c=0} l:\,ax+by+c=0 принимает нулевое значение, то он делится на уравнение этой прямой, то есть P ( x , y ) ⋮ a x + b y + c {\displaystyle P\,(x,\,y)\,\vdots \,ax+by+c} P\,(x,\,y)\,\vdots \,ax+by+c.
Лемма 2
Если кубики P ( x , y ) {\displaystyle P\,(x,\,y)} P\,(x,\,y) и Q ( x , y ) {\displaystyle Q\,(x,\,y)} Q\,(x,\,y) пересекаются в трёх точках на прямой l : a x + b y + c = 0 {\displaystyle l:\,ax+by+c=0} l:\,ax+by+c=0, то существует такое число t {\displaystyle t} t, что P ( x , y ) − t ⋅ Q ( x , y ) ⋮ a x + b y + c {\displaystyle P\,(x,\,y)-t\cdot Q\,(x,\,y)\,\vdots \,ax+by+c} P\,(x,\,y)-t\cdot Q\,(x,\,y)\,\vdots \,ax+by+c.
a = V/(bс) b = V/(ac) c = V/(аb) -
Любое измерения обратно пропорционально объему.
2) Количество купленной ткани обратно пропорционально цене.
КОЛИЧЕСТВО = ДЕНЬГИ / ЦЕНА
и прямо пропорционально количеству денег.
3) ВРЕМЯ = ПЛОЩАДЬ / БЕНЗИН на га.
Сомнительно. Зависит от трактора.
4) Время обратно пропорционально количеству машин.
ВРЕМЯ = ПЛОЩАДЬ / ТРАКТОРА
и прямо пропорционально площади.