М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
maks197rus
maks197rus
15.05.2021 09:00 •  Математика

Нарисовал на тетрадном листе квадрат 5x 5 и каждую минуту закрашивает по одной клетке. леша считает количество граничащих с нею (по стороне) ранее закрашенных клеток и записывает это число на доске . докажите , что когда будут закрашены все клетки , сумма чисел на доске будет равна 40

👇
Ответ:
makareevakarina17
makareevakarina17
15.05.2021
Количество внутренних границ квадрата 5х5 равно 2*4*5=40
И каждый отрезок этой границы между клетками при таком подсчёта учитывается ровно один раз, вне зависимости от очерёдности закрашивания.
Поэтому сумма границ, подсчитыванемых по мере закрашивания большого квадрата и будет равна числу самих внутренних границ, т.е. 40
4,8(13 оценок)
Открыть все ответы
Ответ:
anastaswiip01dya
anastaswiip01dya
15.05.2021
В прямоугольном треугольнике с катетами 3 и 5 вписан квадрат,имеющий с треугольником общий прямой угол.Найти периметр квадрата. Решение.Обозначим наш треугольник как АВС причем АВ=3, ВС =5. Угол В-прямой=90 градусов.Впишем квадрат ДЕКВ где точка Д принадлежит АВ, Е принадлежит АС, К принадлежит СВ. Пусть длина стороны квадрата равна х, тогда надо найти P=4x.Рассмотрим треугольники АЕВ и СВЕ. В этих треугольниках ЕД и ЕК являются их высотами. Поэтому площади этих треугольников равны

Сумма площадей этих треугольников равна площади треугольника АВС
Теперь можно найти х
8x=15x=15/8Найдем периметр квадратаP=4x=4*(15/8)=15/2=7,5ответ:7,5
мне поставил две 5
4,4(38 оценок)
Ответ:
Serebrennikova217
Serebrennikova217
15.05.2021
Улус предложил решение задачи в той же статье, где он и опубликовал саму задачу. Он заявил, что первым вопросом мы должны найти бога, который не является богом случая, то есть является либо богом правды, либо богом лжи. Есть множество вопросов, которые могут быть заданы для достижения этой цели. Одна из стратегий — использование сложных логических связей в самом вопросе.
Вопрос Булоса: "Означает ли «da» «да», только если ты бог правды, а бог B — бог случая?". Другой вариант вопроса: «Является ли нечётным числом количество правдивых утверждений в следующем списке: ты — бог лжи, „ja“ обозначает „да“, B — бог случая?»
Решение задачи может быть упрощено, если использовать условные высказывания, противоречащие фактам (counterfactuals)[4][5]. Идея этого решения состоит в том, что на любой вопрос Q, требующий ответа «да» либо «нет», заданный богу правды или богу лжи:
Если я с тебя Q, ты ответишь «ja»?результат будет «ja», если верный ответ на вопрос Q это «да», и «da», если верный ответ «нет». Для доказательства этого можно рассмотреть восемь возможных вариантов, предложенных самим Булосом:
Предположим, что «ja» обозначает «да», а «da» обозначает «нет»:Мы спрашивали у бога правды, и он ответил «ja». Поскольку он говорит правду и верный ответ на вопрос Q — «ja», оно обозначает «да».Мы спрашивали у бога правды, и он ответил «da». Поскольку он говорит правду и верный ответ на вопрос Q — «da», оно обозначает «нет».Мы спрашивали у бога лжи, и он ответил «ja». Поскольку он всегда лжёт, поэтому на вопрос Q он ответит «da». То есть правильный ответ на вопрос «ja», который обозначает «да».Мы спрашивали у бога лжи, и он ответил «da». Поскольку он всегда лжёт, поэтому на вопрос Q он ответит «ja». То есть правильный ответ на вопрос «da», который обозначает «нет».Предположим, что «ja» обозначает «нет», а «da» обозначает «да»:Мы спрашивали у бога правды, и он ответил «ja». Поскольку он говорит правду и верный ответ на вопрос Q — «da», оно обозначает «да».Мы спрашивали у бога правды, и он ответил «da». Поскольку он говорит правду и верный ответ на вопрос Q — «ja», оно обозначает «нет».Мы спрашивали у бога лжи, и он ответил «ja». Поскольку он всегда лжёт, поэтому на вопрос Q он отвечает «ja». Но, так как он лжёт, верный ответ на вопрос Q — «da», что означает «да».Мы спрашивали у бога лжи, и он ответил «da». Поскольку он всегда лжёт, поэтому на вопрос Q он отвечает «da». Но, так как он лжёт, верный ответ на вопрос Q — «ja», что означает «нет».Используя этот факт, можно задавать вопросы:[4]
Спросим бога B: «Если я с у тебя „Бог А — бог случая?“, ты ответишь „ja“?». Если бог B отвечает «ja», значит, либо он бог случая (и отвечает случайным образом), либо он не бог случая, а на самом деле бог A — бог случая. В любом варианте, бог C — это не бог случая. Если же B отвечает «da», то либо он бог случая (и отвечает случайным образом), либо B не бог случая, что означает, что бог А — тоже не бог случая. В любом варианте, бог A — это не бог случая.Спросим у бога, который не является богом случая (по результатам предыдущего вопроса, либо A, либо C): «Если я с у тебя: „ты бог случая?“, ты ответишь „ja“?». Поскольку он не бог случая, ответ  «ja» обозначает, что он бог правды, а ответ «da» обозначает, что он бог лжи.Спросим у этого же бога «Если я у тебя с Бог B — бог случая?“, ответишь ли ты „ja“?». Если ответ «ja» — бог B является богом случая, если ответ «da», то бог, с которым ещё не говорили, является богом случая.Оставшийся бог определяется методом исключения.
4,6(10 оценок)
Это интересно:
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ