Правило умножения (правило «и») — одно из основных правил комбинаторики. Согласно ему, если элемент A можно выбрать и при любом выборе A элемент B можно выбрать то пару (A, B) можно выбрать Естественным образом обобщается на произвольное количество независимо выбираемых элементов.
Пошаговое объяснение:
Правило умножения (правило «и») — одно из основных правил комбинаторики. Согласно ему, если элемент A можно выбрать и при любом выборе A элемент B можно выбрать то пару (A, B) можно выбрать Естественным образом обобщается на произвольное количество независимо выбираемых элементов.
написал в обьяснении Пошаговое объяснение:
а) Каждый пират должен получить (40 + 40 * 5) : 16 = 15 дукатов. Выдадим 13 пиратам по 3 монеты достоинством 5 дукатов, одному — 5 дукатов и 10 монет достоинством 1 дукат, двоим — по 15 монет достоинством 1 дукат.
б) Каждый пират должен получить 240 : 30 = 8 дукатов, поэтому нужно будет выдать каждому не менее трёх монет достоинством 1 дукат, значит всего монет достоинством 1 дукат нужно не менее 90 штук, а в сундуке их только 40. Следовательно, без сдачи и размена поделить все монеты поровну не получится.
в) Если пиратов 12 или больше, то распределим монеты так: 10 пиратов получают по 4 дуката, один — всё остальное, остальные — ничего. Тогда распределить все монеты нельзя будет по тем же причинам, что и в пункте б).
Если же их не больше 11, то всем, кроме одного, будем выдавать их доли монетами достоинством 5 дукатов, пока они не кончатся.
Если монеты достоинством 5 дукатов закончились, то останется 40 монет достоинством 1 дукат, а их можно разделить на любые целые числа. Если же монеты достоинством в 5 дукатов не кончились, то все доли, кроме одной, можно выдать до конца монетами по 1 дукату (поскольку их получат не более 10 человек, значит, израсходуется не более 40 монет достоинством 1 дукат), а последний заберёт все оставшиеся монеты.
|x - xA y - yA z - zA|
|xB - xA yB - yA zB - zA |
|xC - xA yC - yA zC - zA| = 0
Подставим данные и упростим выражение:|x - 0 y - 0 z - 0|
|1 - 0 2 - 0 3 - 0|
|1 - 0 1 - 0 0 - 0| = 0
|x - 0 y - 0 z - 0|
|1 2 3|
|1 1 0| = 0
(x - 0)(2·0-3·1) - (y - 0)(1·0-3·1) + (z - 0)(1·1-2·1) = 0
(-3)(x - 0) + (y - 0) + (-1)(z - 0) = 0
- 3x + 3y - z = 0.